Skip to main content

Advertisement

Log in

Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we introduce a reaction–diffusion malaria model which incorporates vector-bias, spatial heterogeneity, sensitive and resistant strains. The main question that we study is the threshold dynamics of the model, in particular, whether the existence of spatial structure would allow two strains to coexist. In order to achieve this goal, we define the basic reproduction number \(R_{i}\) and introduce the invasion reproduction number \({\hat{R}}_{i}\) for strain \(i (i=1,2)\). A quantitative analysis shows that if \(R_{i}<1\), then disease-free steady state is globally asymptotically stable, while competitive exclusion, where strain i persists and strain j dies out, is a possible outcome when \(R_{i}>1>R_{j}\) \((i\ne j, i,j=1,2)\), and a unique solution with two strains coexist to the model is globally asymptotically stable if \(R_{i}>1\), \({\hat{R}}_{i}>1\). Numerical simulations reinforce these analytical results and demonstrate epidemiological interaction between two strains, discuss the influence of resistant strains and study the effects of vector-bias on the transmission of malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abboubakar H, Buonomo B, Chitnis N (2016) Modelling the effects of malaria infection on mosquito biting behaviour and attractiveness of humans. Ric di Mat 65(1):329–346

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson MP, Su Z, Alphey N, Alphey LS, Coleman PG, Wein LM (2007) Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. Proc Natl Acad Sci USA 104(22):9540–9545

    Article  Google Scholar 

  • Bai Z, Peng R, Zhao XQ (2018) A reaction–diffusion malaria model with seasonality and incubation period. J Math Biol 77(1):201–228

    Article  MathSciNet  MATH  Google Scholar 

  • Buonomo B, Vargas-De-León C (2012) Stability, and bifurcation analysis of a vector-bias model of malaria transmission. Math Biosci 242(1):59–67

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell RS, Cosner C (2003) Spatial ecology via reaction–diffusion equations. Wiley, Hoboken

    MATH  Google Scholar 

  • CDC (2018) https://www.cdc.gov/malaria/malaria_worldwide/impact.html

  • Chamchod F, Britton NF (2011) Analysis of a vector-bias model on malaria transmission. Bull Math Biol 73(3):639–657

    Article  MathSciNet  MATH  Google Scholar 

  • Chitnis N, Pemberton-Ross P, Yukich J, Hamainza B, Smith TA (2019) Theory of reactive interventions in the elimination and control of malaria. Malar J 18(1):266

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio R\(_0\) in models for infectious-diseases in heterogeneous populations. J Math Biol 28(4):365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Dreessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Esteva L, Gumel AB, Vargas-De-León C (2009) Qualitative study of transmission dynamics of drug-resistant malaria. Math Comput Model 50(3–4):611–630

    Article  MathSciNet  MATH  Google Scholar 

  • Feng Z, Qiu Z, Sang Z, Lorenzo C, Glasser J (2013) Modeling the synergy between HSV-2 and HIV and potential impact of HSV-2 therapy. Math Biosci 245(2):171–187

    Article  MathSciNet  MATH  Google Scholar 

  • Fitzgibbon WE, Morgan JJ, Webb G (2017) An outbreak vector-host epidemic model with spatial structure: the 2015–2016 Zika outbreak in Rio De Janeiro. Theor Biol Med Model 14(1):7

    Article  Google Scholar 

  • Forouzannia F, Gumel A (2015) Dynamics of an age-structured two-strain model for malaria transmission. Appl Math Comput 250:860–886

    MathSciNet  MATH  Google Scholar 

  • Ge J, Kim KI, Lin Z, Zhu H (2015) A SIS reaction–diffusion–advection model in a low-risk and high-risk domain. J Differ Equ 259(2015):5486–5509

    Article  MathSciNet  MATH  Google Scholar 

  • Guo Z, Wang FB, Zou X (2012) Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J Math Biol 65(6–7):1387–1410

    Article  MathSciNet  MATH  Google Scholar 

  • Hagenaars TJ, Donnelly CA, Ferguson NM (2004) Spatial heterogeneity and the persistence of infectious diseases. J Theor Biol 229(3):349–359

    Article  MathSciNet  MATH  Google Scholar 

  • Hale JK, Waltman P (1989) Persistence in infinite-dimensional systems. SIAM J Math Anal 20(2):388–395

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote HW, Ark JWV (1987) Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs. Math Biosci 84(1):85–118

    Article  MathSciNet  MATH  Google Scholar 

  • Hetzel M, Chitnis N (2020) Reducing malaria transmission with reactive focal interventions. Lancet 395(10233):1317–1319

    Article  Google Scholar 

  • Kim S, Masud MA, Cho G, Jung IH (2017) Analysis of a vector-bias effect in the spread of malaria between two different incidence areas. J Theor Biol 419:66–76

    Article  MathSciNet  MATH  Google Scholar 

  • Kingsolver JG (1987) Mosquito host choice and the epidemiology of malaria. Am Nat 130(6):811–827

    Article  Google Scholar 

  • Lacroix R, Mukabana RW, Clement Gouagna L, Jacob KC (2005) Malaria infection increases attractiveness of humans to mosquitoes. PLOS Biol 3(9):e298

    Article  Google Scholar 

  • Li J, Zou X (2009) Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain. Bull Math Biol 71(8):2048–2079

    Article  MathSciNet  MATH  Google Scholar 

  • Liang X, Zhang L, Zhao XQ (2017) Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for lyme disease). J Dyn Differ Equ 31:1247–1278

    Article  MathSciNet  MATH  Google Scholar 

  • Lou Y, Zhao XQ (2011) A reaction–diffusion malaria model with incubation period in the vector population. J Math Biol 62(4):543–568

    Article  MathSciNet  MATH  Google Scholar 

  • Macdonald G (1952) The analysis of equilibrium in malaria. Trop Dis Bull 49(9):813–829

    Google Scholar 

  • Macdonald G (1957) The epidemiology and control of malaria. Oxford University Press, London

    Google Scholar 

  • Magal P, Zhao XQ (2005) Global attractors and steady states for uniformly persistent dynamical systems. SIAM J Math Anal 37(1):251–275

    Article  MathSciNet  MATH  Google Scholar 

  • Magal P, Webb G, Wu Y (2018) On a vector-host epidemic model with spatial structure. Nonlinearity 31(12):5589–5614

    Article  MathSciNet  MATH  Google Scholar 

  • Magal P, Webb G, Wu Y (2019) On the basic reproduction number of reaction–diffusion epidemic models. SIAM J Appl Math 79(1):284–304

    Article  MathSciNet  MATH  Google Scholar 

  • Martin JRH (1976) Nonlinear operators and differential equations in Banach spaces. Wiley-Interscience, New York

    Google Scholar 

  • Martin RH, Smith HL (1990) Abstract functional differential equations and reaction–diffusion systems. Trans Am Math Soc 321(1):1–44

    MathSciNet  MATH  Google Scholar 

  • Ménard D, Khim N, Beghain J, Adegnika AA, Geertruyden JPV (2016) A worldwide map of plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 347(25):2453–2464

    Article  Google Scholar 

  • Mischaikow K, Smith H, Thieme RH (1995) Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions. Trans Am Math Soc 347(5):1669–1685

    Article  MathSciNet  MATH  Google Scholar 

  • Nosten F, White NJ (2007) Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg 77(6Suppl):181

    Article  Google Scholar 

  • Oisaemi I, Babatunde A, Adeniyi O, Oluseye B (2017) Quality of artemisinin-based antimalarial drugs marketed in Nigeria. Trans R Soc Trop Med Hyg 111(2):90–96

    Article  Google Scholar 

  • Reiker T, Chitnis N, Smith T (2019) Modelling reactive case detection strategies for interrupting transmission of plasmodium falciparum malaria. Malar J 18(1):259

    Article  Google Scholar 

  • Robert V, Macintyre K, Keating J, Trape JF, Duchemin JB, Warren M, Beier JC (2003) Malaria transmission in urban sub-Saharan Africa. Am J Trop Med Hyg 68(2):169–176

    Article  Google Scholar 

  • Ross R (1911) The prevention of malaria. John Murray, London

    Google Scholar 

  • Ross R (1916) An application of the theory of probabilities to the study of a priori pathometry. Part I. Proc R Soc Lond A 92(638):204–230

    Article  MATH  Google Scholar 

  • Smith HL (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, vol 41. Mathematical surveys and monographs. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Smith HL, Zhao XQ (2001) Robust persistence for semidynamical systems. Nonlinear Anal Theory Methods Appl 47(9):6169–6179

    Article  MathSciNet  MATH  Google Scholar 

  • Smoller J (1994) Shock waves and reaction diffusion equations. Springer, New York

    Book  MATH  Google Scholar 

  • Tabachnick WJ (2010) Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J Exp Biol 213(6):946

    Article  Google Scholar 

  • Tamsin EL, Penny MA (2019) Identifying key factors of the transmission dynamics of drug-resistant malaria. J Theor Biol 462:210–220

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR (1992) Convergence results and Poincare–Bendixson trichotomy for asymptotically autonomous differential equations. J Math Biol 30(7):755–763

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR (2009) Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math 70:188–211

    Article  MathSciNet  MATH  Google Scholar 

  • Tumwiine J, Hove-Musekwa DS, Nyabadza F (2014) A mathematical model for the transmission and spread of drug sensitive and resistant malaria strains within a human population. ISRN Biomath 4:1–12

    Article  MATH  Google Scholar 

  • Tuncer N, Martcheva M (2012) Analytical and numerical approaches to coexistence of strains in a two-strain SIS model with diffusion. J Biol Dyn 6(2):406–439

    Article  MathSciNet  MATH  Google Scholar 

  • Vargas-De-León C (2012) Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes. Math Biosci Eng 9(1):165–174

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Chen Y (2020) Threshold dynamics of a vector-borne disease model with spatial structure and vector-bias. Appl Math Lett 100:106052

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W, Zhao XQ (2012) Basic reproduction numbers for reaction–diffusion epidemic models. SIAM J Appl Dyn Syst 11(4):1652–1673

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W, Zhao XQ (2015) Spatial invasion threshold of Lyme disease. SIAM J Appl Math 75(3):1142–1170

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Zhao XQ (2017) A periodic vector-bias malaria model with incubation period. SIAM J Appl Math 77(1):181–201

    Article  MathSciNet  MATH  Google Scholar 

  • WHO (2018) https://www.who.int/malaria/media/world-malaria-report-2018/zh/

  • Wu J (1996) Theory and applications of partial functional differential equations. Springer, New York

    Book  MATH  Google Scholar 

  • Wu R, Zhao XQ (2019) A reaction–diffusion model of vector-borne disease with periodic delays. J Nolinear Sci 29:29–64

    Article  MathSciNet  MATH  Google Scholar 

  • Xu Z, Zhang Y (2015) Traveling wave phenomena of a diffusive and vector-bias malaria model. Commun Pure Appl Anal 14(3):923–940

    Article  MathSciNet  MATH  Google Scholar 

  • Xu Z, Zhao XQ (2013) A vector-bias malaria model with incubation period and diffusion. Discrete Continuous Dyn Syst Ser B 17(7):2615–2634

    Article  MathSciNet  MATH  Google Scholar 

  • Yeung S, Pongtavornpinyo W, Hastings IM, Mills AJ, White NJ (2004) Antimalarial drug resistance, artemisinin-based combination therapy, and the contribution of modeling to elucidating policy choices. Am J Trop Med Hyg 71(2):179–186

    Article  Google Scholar 

  • Zhang X, Zhang Y (2018) Spatial dynamics of a reaction–diffusion cholera model with spatial heterogeneity. Discrete Continuous Dyn Syst Ser B 23(6):2625–2640

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao L, Wang ZC, Ruan S (2020) Dynamics of a time-periodic two-strain SIS epidemic model with diffusion and latent period. Nonlinear Anal-Real 51:102966

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao XQ (2012) Global dynamics of a reaction and diffusion model for lyme disease. J Math Biol 65(4):787–808

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao XQ (2017) Dynamical systems in population biology. Springer, London

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank the editors and reviewers for their comments and suggestions, which help improve the presentation of the paper. The authors are grateful for the support and useful comments provided by Professor Xiaoqiang Zhao (Memorial University of Newfoundland). This research is supposed by National Science Foundation of China (grant number: 11971013, 11571170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The details of assumption \(N(t,x)\equiv N(x)\)

Here, based on the research of Bai et al. (2018), we will take \(b_{h}\) as a typical birth rate function, i.e., \(b_{h}=b_{h}(N_{h})=b_{0}e^{-N_{h}/K(x)}\), where \(b_{0}>0\) is the maximal individual birth rate of human, and K(x), standing for the local carrying capacity, is supposed to be a positive function of location x.

We prove this result in several steps.

Step 1. It is easy to see that for any \(\phi \in C({\bar{\varOmega }},{\mathbb {R}}_{+})\), system (1)–(2) has a unique positive solution \(N(t,x,{\phi })\) on \([0,\infty )\times {\bar{\varOmega }}\) (see, Martin and Smith 1990, Corollary 5), with \(N(0,x,\phi )=\phi \). Define \(P_{t}:C({\bar{\varOmega }},{\mathbb {R}}_{+})\rightarrow C({\bar{\varOmega }},{\mathbb {R}}_{+})\) by

$$\begin{aligned} \begin{aligned} P_{t}[\phi ](x)=N(t,x;\phi ). \end{aligned} \end{aligned}$$

It then follows that \(\{P_{t}\}_{t\ge 0}\) is a semifolw on \(C({\bar{\varOmega }},{\mathbb {R}}_{+})\).

For any \(\phi \in C({\bar{\varOmega }},{\mathbb {R}}_{+})\) with \(\phi \gg 0\) one easily finds that \(N(t,x;\phi )>0\) for \(t\ge 0\) and \(x\in \varOmega \). Fix \(k\in (0,1)\) and let \(w(t,x)=N(t,x;k\phi )-kN(t,x;\phi )\). Then \(w(0,x)=0\) for \(x\in \varOmega \). For \(t>0\), w(tx) satisfies

$$\begin{aligned} \begin{aligned} \frac{\partial w(t,x)}{\partial t}&=\frac{\partial N(t,x;k\phi )}{\partial t}-k\frac{\partial N(t,x;\phi )}{\partial t}\\&=D_{h}\varDelta w(t,x)-dw(t,x)+b_{h}(N(t,x;k\phi ))N(t,x;k\phi )\\&\quad -kb_{h}(N(t,x;\phi ))N(t,x;\phi ). \end{aligned} \end{aligned}$$
(39)

Let \(f(t,N(t,x;\phi ))=b_{h}(N(t,x;\phi ))N(t,x;\phi )\), then (39) can be written as

$$\begin{aligned} \begin{aligned} \frac{\partial w(t,x)}{\partial t}&=D_{h}\varDelta w(t,x)-dw(t,x)+f(t,N(t,x;k\phi ))-f(t,k(N(t,x;\phi )))\\&\quad +f(t,k(N(t,x;\phi )))-kf(t,N(t,x;\phi ))\\&=D_{h}\varDelta w(t,x)-(d-H(t,x))w(t,x)+h(t,x), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} H(t,x)&=\int _{0}^{1}\partial _{2}f(t,kN(t,x;\phi )+(1-s)kN(t,x;\phi ))ds,~~~0\le s\le 1,\\ h(t,x)&=f(t,k(N(t,x;\phi )))-kf(t,N(t,x;\phi )). \end{aligned} \end{aligned}$$

Let U(ts), \(t\ge s\ge 0\), be the evolution operator of the linear parabolic equation

$$\begin{aligned} \begin{aligned} \frac{\partial w(t,x)}{\partial t}=D_{h}\varDelta w(t,x)-(d_{h}-H(t,x))w(t,x), ~~~t>0,~~x\in \varOmega . \end{aligned} \end{aligned}$$

Following Smith (1995, Theorem 7.4.1), one easily sees that U(ts), \(t> s\ge 0\), is strongly positive, i.e., for any \(\varphi >0\), \(U(t,s)\varphi \gg 0\). By the formula of variation of constants, we have

$$\begin{aligned} \begin{aligned} w(t,x)=\int _{0}^{t}U(t,s)h(s,\cdot )(x)ds, ~~~t>0,~~x\in \varOmega . \end{aligned} \end{aligned}$$

Since \(N(t,\cdot ;\phi )>0\), \(t\ge 0\), when \(\phi \gg 0\) and f(tN) is strictly subhomogeneous in N, we have \(h(s,\cdot )>0\) and hence \(w(t,\cdot )>0\) for \(t>0\). Therefore, \(P_{t}(k\phi )>kP_{t}(\phi )\) for each \(t>0\), so \(P_{t}\) is strictly subhomogeneous.

Step 2. For each \(t\ge 0\), the Frechet derivative \(DP_{t}(t)=\varPhi (t)\), where \(\varPhi (t)\) is the semigroup generated by the linear equation \(\frac{\partial N_{h}(t,x)}{\partial t}=d\varDelta N_{h}(t,x)+g(x,0)N_{h}(t,x)\) with \(\frac{\partial N_{h}(t,x)}{\partial \nu }=0\), where \(g(x,N_{h}(t,x))=b_{h}(N_{h}(t,x))-d_{h}\). It then follows that \(r(D(P_{t}(0)))=e^{\lambda _{0}(d,g(x,0))t}\), where \(\lambda _{0}(d,g(x,0))\) is the principle eigenvalue of \(d\varDelta \phi +g(x,0)\phi =\lambda \phi \) with \(\frac{\partial \phi }{\partial \nu }=0\).

Step 3. In the case, where \(r(D(P_{t}(0)))>1\), i.e., \(\lambda _{0}(d,g(0,x))>0\), apply the Zhao (2017, Theorem 2.3.4) to the time-one map \(P_{1}\). There exists a unique positive fixed point of \(P_{1}\), which is assumed to be N(x).

Step 4. Since system (1)–(2) is autonomous, then \(P_{1}(P_{t}(N(x)))=P_{t+1}(N(x))=P_{t}(P_{1}(N(x)))=P_{t}(N(x))\). The uniqueness of positive fixed point of \(P_{1}\) implies that \(P_{t}(N(x))=N(x)\), \(\forall t\ge 0\), that is, N(x) is a steady state of (1).

Therefore, it is reasonable to assume that \(N(t,x)\equiv N(x)\).

1.2 The derivation of P(A|B)

$$\begin{aligned} \begin{aligned} P(A|B)&=\frac{P(B|A)P(A)}{P(B)}=\frac{P(B|A)P(A)}{P(B|A)P(A)+P(B|A^{c})P(A^{c})}\\&=\frac{p\frac{I_{1}(t,x)+I_{2}(t,x)}{N(x)}}{p\frac{I_{1}(t,x)+I_{2}(t,x)}{N(x)}+l\left[ 1-\frac{I_{1}(t,x)+I_{2}(t,x)}{N(x)}\right] }\\&=\frac{p\left[ I_{1}(t,x)+I_{2}(t,x)\right] }{p\left[ I_{1}(t,x)+I_{2}(t,x)\right] +l\left[ N(x)-I_{1}(t,x)-I_{2}(t,x)\right] }. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zhao, H. Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias. J. Math. Biol. 82, 24 (2021). https://doi.org/10.1007/s00285-021-01577-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-021-01577-3

Keywords

Mathematics Subject Classification

Navigation