Skip to main content

Advertisement

Log in

Optimal control of vaccination rate in an epidemiological model of Clostridium difficile transmission

Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The spore-forming, gram-negative bacteria Clostridium difficile can cause severe intestinal illness. A striking increase in the number of cases of C. difficile infection (CDI) among hospitals has highlighted the need to better understand how to prevent the spread of CDI. In our paper, we modify and update a compartmental model of nosocomial C. difficile transmission to include vaccination. We then apply optimal control theory to determine the time-varying optimal vaccination rate that minimizes a combination of disease prevalence and spread in the hospital population as well as cost, in terms of time and money, associated with vaccination. Various hospital scenarios are considered, such as times of increased antibiotic prescription rate and times of outbreak, to see how such scenarios modify the optimal vaccination rate. By comparing the values of the objective functional with constant vaccination rates to those with time-varying optimal vaccination rates, we illustrate the benefits of time-varying controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alasmari F, Seiler S, Hink T, Burnham C, Dubberke E (2014) Prevalence and risk factors for asymptomatic Clostridium difficile carriage. Clin Infect Dis 59(2):216–222

    Article  Google Scholar 

  • Asano E, Gross L, Lenhart S, Real L (2008) Optimal control of vaccine distribution in a rabies metapopulation model. Math Biosci Eng 5(2):219–238

    Article  MathSciNet  MATH  Google Scholar 

  • Clabots C, Johnson S, Olson M, Peterson L, Gerding D (1992) Acquisition of Clostridium difficile by hospitalized patients: evidence for colonized new admissions as a source of infection. J Infect Dis 166(3):561–567

    Article  Google Scholar 

  • Ding W, Webb G (2016) Optimal control applied to community-acquired methicillin-resistant Staphylococcus aureus in hospitals. J Biol Dyn. doi:10.1080/17513758.2016.1151564

  • Dubberke E, Carling P, Carrico R, Donskey C, Loo V, McDonald L, Maragakis L, Sandora T, Weber D, Yokoe D et al (2014) Strategies to prevent Clostridium difficile infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35(06):628–645

    Article  Google Scholar 

  • Dubberke E, Haslam D, Lanzas C, Bobo L, Burnham CA, Grohn Y (2011) The ecology and pathobiology of Clostridium difficile infections: an interdisciplinary challenge. Zoonoses Public Health 58(1):4–20

    Article  Google Scholar 

  • Fister R, Lenhart S, McNally J (1998) Optimizing chemotherapy in an hiv model. Electron J Differ Equ 32:1–12

    MathSciNet  MATH  Google Scholar 

  • Gaff H, Schaefer E (2009) Optimal control applied vaccination and treatment strategies for various epidemiological models. Math Biosci Eng 6:469–492

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh-Dasitar U, Lenhart S (2015) Modeling the effect of vaccines on cholera. J Biol Syst 23(02):323–338

    Article  MATH  Google Scholar 

  • Johnson S, Gerding D (1998) Clostridium difficile-associated diarrhea. Clin Infect Dis 26(5):1027–1034

    Article  Google Scholar 

  • Kelly M Jr, Tien J, Eisenberg M, Lenhart S (2016) The impact of spatial arrangements on epidemic disease dynamics and intervention strategies. J Biol Dyn 10:222–249

    Article  MathSciNet  Google Scholar 

  • Kyne L, Warny M, Qamar A, Kelly C (2000) Asymptomatic carriage of Clostridium difficile and serum levels of igg antibody against toxin a. N Engl J Med 342(6):390–397

    Article  Google Scholar 

  • Kyne L, Warny M, Qamar A, Kelly C (2000) Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med 342(6):390–397

    Article  Google Scholar 

  • Lanzas C, Dubberke E, Lu Z, Reske K, Grohn Y (2011) Epidemiological model for Clostridium difficile transmission in healthcare settings. Infect Control Hosp Epidemiol 32(6):553–561

    Article  Google Scholar 

  • Lee B, Popovich M, Tian Y, Bailey R, Ufberg P, Wiringa A, Muder R (2010) The potential value of Clostridium difficile vaccine: an economic computer simulation model. Vaccine 28(32):5245–5253

    Article  Google Scholar 

  • Leffler D, Lamont T (2015) Clostridium difficile infection. N Engl J Med 372(16):1539–1548

    Article  Google Scholar 

  • Lenhart S, Workman J (2007) Optimal control applied to biological models. CRC Press, New York

    MATH  Google Scholar 

  • Lessa F, Mu Y, Bamberg W, Beldavs Z, Dumyati G, Dunn J, Farley M, Holzbauer S, Meek J, Phipps E, Wilson L, Winston L, Cohen J, Limbago B, Fridkin S, Gerding D, McDonald L (2015) Burden of Clostridium difficile infection in the united states. N Engl J Med 372(9):825–834

    Article  Google Scholar 

  • Leuzzi R, Adamo R, Scarselli M (2014) Vaccines against Clostridium difficile. Hum Vaccines Immunother 10(6):1466–1477

    Article  Google Scholar 

  • Lowden J, Beilan R, Yahdi M (2014) Optimal control of vancomycin-resistant enterococci using preventive care and treatment of infections. Math Biosci 249:8–17

    Article  MathSciNet  MATH  Google Scholar 

  • McDonald L, Killgore G, Thompson A, Owens RJ, Kazakova S, Sambol S, Johnson S, Gerding D (2005) An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353(23):2433–2441

    Article  Google Scholar 

  • McFarland L (2008) Update on the changing epidemiology of Clostridium difficile-associated disease. Nat Clin Pract Gastroenterol Hepatol 5(1):40–48

    Article  MathSciNet  Google Scholar 

  • McFarland L, Mulligan M, Kwok R, Stamm W (1989) Nosocomial acquisition of Clostridium difficile infection. N Engl J Med 320(4):204–210

    Article  Google Scholar 

  • Miller-Neilan R, Schaefer E, Gaff H, Fister K, Lenhart S (2010) Modeling optimal intervention strategies for cholera. Bull Math Biol 1(4):379–393

    MathSciNet  MATH  Google Scholar 

  • Pontryagin L, Boltyanskii V, Gamkrelize R, Mishchenko E (1962) The mathematical theory of optimal processes. Wiley, New York

    Google Scholar 

  • Rafii F, Sutherland J, Cerniglia C (2008) Effects of treatment with antimicrobial agents on the human colonic microflora. Ther Clin Risk Manag 4(6):1343–1358

    Article  Google Scholar 

  • Samore M, Venkataraman L, DeGirolami P, Arbeit R, Karchmer A (1996) Clinical and molecular epidemiology of sporadic and clustered cases of nosocomial Clostridium difficile infection. N Engl J Med 100(1):32–40

    Google Scholar 

  • Siewe N, Yakubu A, Satoskar A, Friedman A (2016) Immune response to infection by Leishmania: a mathematical model. Math Biosci 276:28–43

    Article  MathSciNet  MATH  Google Scholar 

  • Smith H (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. American Mathematical Society, Rhode Island

    MATH  Google Scholar 

  • Starr J, Campbell A, Renshaw E, Poxton I, Gibson G (2009) Spatiotemporal stochastic modeling of Clostridium difficile. J Hosp Infect 71(1):49–56

    Article  Google Scholar 

  • Viscidi R, Laughon B, Yolken R, Bo-Linn P, Moench T, Ryder R, Bartlett J (1983) Serum antibody response to toxins a and b of Clostridium difficile. J Infect Dis 148(1):93–100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brittany Stephenson.

Additional information

This work was supported by the joint DMS/NIGMS Mathematical Biology Program through NIH award #R01GM113239.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stephenson, B., Lanzas, C., Lenhart, S. et al. Optimal control of vaccination rate in an epidemiological model of Clostridium difficile transmission. J. Math. Biol. 75, 1693–1713 (2017). https://doi.org/10.1007/s00285-017-1133-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-017-1133-6

Keywords

Mathematics Subject Classification

Navigation