Skip to main content

Advertisement

Log in

Vaccination based control of infections in SIRS models with reinfection: special reference to pertussis

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the impact of introducing a partially protective vaccine on the dynamics of infection in SIRS models where primary and secondary infections are distinguished. We investigate whether a public health strategy based solely on vaccinating a proportion of newborns can lead to an effective control of the disease. In addition to carrying out the qualitative analysis, the findings are further explained by numerical simulations. The model exhibits backward bifurcation for certain values of the parameters. In these cases the standard basic reproduction number (obtained by inspection of the uninfected state) is not significant. The key threshold is the reinfection level which depends on the relative transmissibility (susceptibility) of secondary, with respect to primary, infected (susceptible) individuals and the relative loss of immunity of vaccinated, with respect to recovered, individuals. If one or all of these ratios decrease, then the threshold increases which increases the possibility to contain the infection by vaccination. The analysis shows further that symptomatic infections can be eliminated by vaccination solely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguas R, Goncalves G, Gomes MGM (2006) Pertussis: increasing disease as a consequence of reducing transmission. Lancet Infect Dis 6:112–117

    Article  Google Scholar 

  • Arino J, Cooke KL, van den Driessche P, Velasco-Hernández J (2004) An epidemiology model that includes a leaky vaccine with a general waning function. Discrete Contin Dyn Syst Ser B 4:479–495

    Article  MathSciNet  MATH  Google Scholar 

  • Boldin B (2006) Introducing a population into a steady community: the critical case, the centre manifold and the direction of bifurcation. SIAM J Appl Math 66:1424–1453

    Article  MathSciNet  MATH  Google Scholar 

  • Carr J (1981) Applications of center manifold theory. Springer, New York

    Book  Google Scholar 

  • Castillo-Chavez C, Song B (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 1:361–404

    Article  MathSciNet  MATH  Google Scholar 

  • de Melker HE, Schellekens JFP, Neppelenbroek SE, Mooi FR, Rümke HC, Conyn-van Spaendonck MAE (2000) Reemergence of pertussis in the highly vaccinated population of the Netherlands: observations on surveillance data. Emerg Infect Dis 6(4):348–357

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz J (1990) On the definition and computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J Math Biol 28:365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Roberts M (2010) The construction of the next-generation matrix for compartmental epidemic models. J Roy Soc Interface 7:873–885

    Article  Google Scholar 

  • Dushoff J, Huang W, Castillo-Chavez C (1998) Backwards bifurcations and catastrophe in simple models of fatal diseases. J Math Biol 36:227–248

    Article  MathSciNet  MATH  Google Scholar 

  • Elomaa A, He Q, Minh NNT, Mertsola J (2009) Pertussis before and after the introduction of acellular pertussis vaccines in Finland. Vaccine 27:7443–7449

    Article  Google Scholar 

  • Feng Z, Castillo-Chavez C, Capurro AF (2000) A model for tuberculosis with exogenous reinfection. Theor Pop Biol 57:235–247

    Article  MATH  Google Scholar 

  • Gandon S, Mackinnon MJ, Nee S, Read AF (2001) Imperfect vaccines and the evolution of pathogen virulence. Nature 414:751–756

    Article  Google Scholar 

  • Gomes MGM, White LJ, Medley GF (2004) Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives. J Theor Biol 228:539–549

    Article  MathSciNet  Google Scholar 

  • Gomes MGM, White LJ, Medley GF (2005) The reinfection threshold. J Theor Biol 236:111–113

    Article  MathSciNet  Google Scholar 

  • Greenhalgh D, Griffiths M (2009) Backward bifurcation, equilibrium and stability phenomena in a three-stage BRSV epidemic model. J Math Biol 59:1–36

    Article  MathSciNet  MATH  Google Scholar 

  • Greenhalgh D, Griffiths M (2009) Dynamic phenomena for an extended core group model. Math Biosci 221:136–149

    Article  MathSciNet  MATH  Google Scholar 

  • Greenhalgh D, Diekmann O, de Jong MCM (2000) Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. Math Biosci 165:1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP, Castillo-Chavez C (1995) A core group model for disease transmission. Math Biosci 128:41–55

    Article  MATH  Google Scholar 

  • Hadeler KP, van den Driessche P (1997) Backward bifurcation in epidemic control. Math Biosci 146:15–35

    Article  MathSciNet  MATH  Google Scholar 

  • Kribs-Zaleta CM (2002) Center manifold and normal forms in epidemic models. In: Castillo-Chavez C et al (eds) Mathematical approaches for emerging and reemerging infectious diseases: models, methods and theory, IMA 125. Springer, New York, pp 269–286

  • Kribs-Zaleta CM, Martcheva M (2002) Vaccination strategies and backward bifurcation in an age-since-infection structured mode. Math Biosci 177 and 178:317–332

    Article  MathSciNet  Google Scholar 

  • Kribs-Zaleta CM, Velasco-Hernandez JX (2000) A simple vaccination model with multiple endemic states. Math Biosci 164:183–201

    Article  MATH  Google Scholar 

  • Lee GM, LeBaron C, Murphy TV, Lett S, Schauer S, Lieu TA (2005) Pertussis in adolescents and adults: should we vaccinate? Pediatrics 115(6):1675–1684

    Article  Google Scholar 

  • Mäkinen J, Mertsola J, Mooi FR, Van Amersfoorth S, Arvilommi H, Viljanen MK, He Q (2005) Bordetella pertussis isolates, Finland. Emerg Infect Dis 11(1):183–184

    Article  Google Scholar 

  • Moghadas SM (2004) Analysis of an epidemic model with bistable equilibria using the Poincaré index. Appl Math Comput 149:689–702

    Article  MathSciNet  MATH  Google Scholar 

  • Moghadas SM (2004) Modeling the effect of imperfect vaccines on disease epidemiology. Discrete Contin Dyn Syst Ser B 4:999–1012

    Article  MathSciNet  MATH  Google Scholar 

  • Préziosi MP, Halloran ME (2003) Effects of pertussis vaccination on transmission: vaccine efficacy for infectiousness. Vaccine 21:1853–1861

    Article  Google Scholar 

  • Reluga TC, Medlock J (2007) Resistance mechanisms matter in SIR models. Math Biosci Eng 4:553–563

    Article  MathSciNet  MATH  Google Scholar 

  • Safan M, Dietz K (2009) On the eradicability of infections with partially protective vaccination in models with backward bifurcation. Math Biosci Eng 6:395–407

    Article  MathSciNet  MATH  Google Scholar 

  • Safan M, Heesterbeek H, Dietz K (2006) The minimum effort required to eradicate infections in models with backward bifurcation. J Math Biol 53:703–718

    Article  MATH  Google Scholar 

  • Seydel R (1988) From equilibrium to chaos: practical bifurcation and stability analysis. Elsevier, New York

    MATH  Google Scholar 

  • Tanaka M, Vitek CR, Pascual FB, Bisgard KM, Tate JE, Murphy TV (2003) Trends in pertussis among infants in the United States, 1980–1999. JAMA 290:2968–2975

    Article  Google Scholar 

  • van Boven M, Mooi FR, Schellekens JFP, de Melker HE, Kretzschmar M (2005) Pathogen adaptation under imperfect vaccination: implications for pertussis. Proc R Soc Lond B 272:1617–1624

    Article  Google Scholar 

  • van den Driessche P, Watmough J (2000) A simple SIS epidemic model with a backward bifurcation. J Math Biol 40:525–540

    Article  MathSciNet  MATH  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • World Health Organization (2001) Department of vaccines and biologicals. In: Proceedings of the pertussis surveillance: a global meeting. Geneva, 16–18 October 2000. WHO, Geneva, pp 1–40

Download references

Acknowledgments

The authors would like to thank the editor as well as the anonymous referees very much for their invaluable and comprehensive comments which helped in improving the paper. Also, many thanks to the Odo Diekmann group who read the manuscript in their journal club for their comments that helped to improve it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muntaser Safan.

Appendix

Appendix

Proof of Proposition 5

We write the quadratic equation (26) as

$$\begin{aligned} \kappa ^2 \mathcal A - 2\kappa \mathcal B + \mathcal C =0 \end{aligned}$$
(40)
$$\begin{aligned} \mathcal A&= B_1^2 \\ \mathcal B&= g(b\sigma \!+\!\mu )(\alpha \!+\!\mu )\{(1\!-\!p)(b\sigma \!+\!\mu )[g\mu (q\alpha \!+\!\sigma \!+\!\mu )(\mu (q\alpha \!+\!\sigma \!+\!\mu )\!+\!r\alpha \sigma )\\&+(q\alpha +\mu )(\sigma +\mu )(r\alpha \sigma -\mu (q\alpha +\sigma +\mu ))] \\&+rpb\sigma (\alpha +\mu )(\sigma +\mu )[(q\alpha +\mu )(\sigma +\mu )-g\mu (q\alpha +\sigma +\mu )] \}, \\ \mathcal C&= \{(\alpha +\mu )(b\sigma +\mu )[(q\alpha +\mu )(\sigma +\mu )-g\mu (q\alpha +\sigma +\mu )]\}^2. \end{aligned}$$

We first define the following quantities

$$\begin{aligned} X_1&= b\sigma +\mu \\ Y_1&= q\alpha +\sigma +\mu \\ Z_1&= r\alpha \sigma + \mu (q\alpha +\sigma +\mu ) = r\alpha \sigma + \mu Y_1. \end{aligned}$$

Now we evaluate

$$\begin{aligned} \mathcal B ^2 -\! \mathcal AC&= g^2 X_1^2(\alpha \!+\!\mu )^2\{(1\!-\!p)^2 X_1^2\{[g\mu Y_1 Z_1 \!+\! (q\alpha \!+\!\mu )(\sigma \!+\!\mu )(Z_1\!-\!2\mu Y_1)]^2 \\&-\, Z_1^2[(q\alpha +\mu )(\sigma +\mu )-g\mu Y_1]^2\} \\&+\, 2 p(1\!-\!p)rb\sigma X_1 (\alpha \!+\!\mu )(\sigma \!+\!\mu )[(q\alpha \!+\!\mu )(\sigma \!+\!\mu )\!-\!g\mu Y_1]\{g\mu Y_1 Z_1 \\&+\,(q\alpha +\mu )(\sigma +\mu )(Z_1-2 \mu Y_1) - Z_1[(q\alpha +\mu )(\sigma +\mu )-g\mu Y_1]\}\} \end{aligned}$$

and hence

$$\begin{aligned} \mathcal B ^2 -&\!\mathcal A C \\&= g^2 X_1^2(\alpha \!+\!\mu )^2\{(1\!-\!p)^2 X_1^2\{Z_1^2[(q\alpha \!+\!\mu )(\sigma \!+\!\mu )\!-\!g\mu Y_1]^2\\&+\, 4 \mu ^2 Y_1^2 (q\alpha \!+\!\mu )^2(\sigma \!+\!\mu )^2 \!-\! 4\mu Y_1 Z_1 (q\alpha \!+\!\mu )(\sigma \!+\!\mu )[(q\alpha \!+\!\mu )(\sigma \!+\!\mu )\!+\! g\mu Y_1]\\&-\, Z_1^2[(q\alpha \!+\!\mu )(\sigma \!+\!\mu )\!-\!g\mu Y_1]^2 \}\\&+\, 2 p(1-p)rb\sigma X_1 (\alpha +\mu )(\sigma +\mu )[(q\alpha +\mu )(\sigma +\mu )-g\mu Y_1][2g\mu Y_1 Z_1\\&-\, 2\mu Y_1(q\alpha +\mu )(\sigma +\mu )]\}\\&= 4 g^2 X_1^2(\alpha +\mu )^2\mu Y_1 X_1 (1-p) \{(1-p) X_1(q\alpha +\mu )(\sigma +\mu )[(Z_1 - \mu Y_1)(g Z_1 \\&-\,(q\alpha +\mu )(\sigma +\mu ))] \\&+\, rb\sigma p(\alpha \!+\!\mu )(\sigma \!+\!\mu )[(q\alpha \!+\!\mu )(\sigma \!+\!\mu )\!-\!g\mu Y_1][g Z_1 \!-\! (q\alpha \!+\!\mu )(\sigma \!+\!\mu )]\}\\&= 4 g^2 X_1^2(\alpha +\mu )^2(1-p) X_1\mu Y_1(\sigma +\mu )[g Z_1 - (q\alpha +\mu )(\sigma +\mu )] \\&\times \{(1\!-\!p) X_1(q\alpha \!+\!\mu )(Z_1 \!-\! \mu Y_1) \!+\! rb\sigma p(\alpha \!+\!\mu )[(q\alpha \!+\!\mu )(\sigma \!+\!\mu )\!-\!g\mu Y_1]\} \\&= 4 g^2 X_1^2(\alpha +\mu )^2(1-p) X_1\mu Y_1(\sigma +\mu )[g Z_1 - (q\alpha +\mu )(\sigma +\mu )] \\&\times \{r\sigma \alpha (1-p) X_1(q\alpha +\mu ) + rb\sigma p(\alpha +\mu )[(q\alpha +\mu )(\sigma +\mu )-g\mu Y_1]\} \\&= 4 g^2 X_1^2(\alpha +\mu )^2\{(1-p) X_1\mu Y_1[g Z_1 - (q\alpha +\mu )(\sigma +\mu )]\} \\&\times \{r\sigma (\sigma \!+\!\mu )[(1\!-\!p) X_1 \alpha (q\alpha \!+\!\mu ) \!+\! b p(\alpha \!+\!\mu )[(q\alpha \!+\!\mu )(\sigma \!+\!\mu )\!-\!g\mu Y_1]]\}\\&= 4 g^2 X_1^2(\alpha +\mu )^2 H_1(p) H_2(p). \end{aligned}$$

Also,

$$\begin{aligned} \mathcal B&= g(b\sigma \!+\!\mu )(\alpha \!+\!\mu )\{(1\!-\!p)(b\sigma \!+\!\mu )[g\mu (q\alpha \!+\!\sigma \!+\!\mu )(\mu (q\alpha \!+\!\sigma \!+\!\mu )\!+\!r\alpha \sigma )\\&+(q\alpha +\mu )(\sigma +\mu )(r\alpha \sigma -\mu (q\alpha +\sigma +\mu ))] \\&+rpb\sigma (\alpha +\mu )(\sigma +\mu )[(q\alpha +\mu )(\sigma +\mu )-g\mu (q\alpha +\sigma +\mu )] \}, \\&= g X_1(\alpha +\mu )\{(1-p) X_1 [g\mu Y_1 Z_1 + X_1(\sigma +\mu )(Z_1 - 2 \mu Y_1)] \\&+rpb\sigma (\alpha +\mu )(\sigma +\mu )[(q\alpha +\mu )(\sigma +\mu )-g\mu Y_1] \}, \\&= g X_1(\alpha +\mu )\{(1-p)\mu X_1 Y_1[g Z_1 -(q\alpha +\mu )(\sigma +\mu )] \\&+ r\sigma (\sigma +\mu )[(1-p) X_1 \alpha (q\alpha +\mu )+bp(\alpha +\mu )((q\alpha +\mu )(\sigma +\mu ) - g\mu Y_1)]\} \\&= g X_1(\alpha +\mu ) \{H_1(p) + H_2(p)\}. \end{aligned}$$

Recall \( \mathcal A =B_1^2\). Hence,

$$\begin{aligned} \kappa _1^\star&= \frac{g X_1(\alpha +\mu ) \{H_1(p) + H_2(p)\} + \sqrt{4 g^2 X_1^2(\alpha +\mu )^2 H_1(p) H_2(p)}}{g^2 \{H_3(p)\}^2} \\&= \frac{X_1(\alpha +\mu )}{g} \times {\left(\frac{\sqrt{H_1(p)} + \sqrt{H_2(p)}}{H_3(p)}\right)}^2. \end{aligned}$$

\(\square \)

Direction of bifurcation

To get the direction of bifurcation at the uninfected equilibrium, we use the implicit function theorem

$$\begin{aligned} \frac{\partial \lambda }{\partial \kappa }=-\frac{F_\kappa }{F_\lambda }\vert _{\lambda =0, \kappa =\kappa _v}\end{aligned}$$
(41)

We find that \(F_\kappa \) at \(\lambda =0\) is equal to \(C_\kappa = - C_1 <0\). Hence the direction of bifurcation is given by the sign of \(F_\lambda \) which is the value of \(B\) at \(\kappa =\kappa _v\). This expression is (see below), up to a positive factor,

$$\begin{aligned}&(1-p)(q\alpha +\mu )(b\sigma +\mu )[(q\alpha +\mu )(\sigma +\mu )-rg\alpha \sigma ]\nonumber \\&\quad + prg^2b\sigma \mu (q\alpha +\sigma +\mu )(\alpha +\mu ). \end{aligned}$$
(42)

Proof of formula (42)

At \(\kappa = \kappa _v\), then

$$\begin{aligned} B&= B_0 - \kappa _v B_1 \\&= X_1(\alpha +\mu )[g\mu Y_1 + (q\alpha +\mu )(\sigma +\mu )] \\&- \frac{g(q\alpha +\mu )(\alpha +\mu )X_1\{(1-p)X_1(\mu Y_1+r\alpha \sigma )+ r p b \sigma (\alpha +\mu )(\sigma +\mu )\}}{(1-p)(q\alpha +\mu )X_1 + r g p b \sigma (\alpha +\mu )}. \end{aligned}$$

Since \((1-p)(q\alpha +\mu )X_1 + r g p b \sigma (\alpha +\mu )>0\), then the sign of \(B\) depends on the sign of

$$\begin{aligned}&[g\mu Y_1 + (q\alpha +\mu )(\sigma +\mu )][{(1-p)(q\alpha +\mu )X_1 + r g p b \sigma (\alpha +\mu )}]\\&\qquad -\,g(q\alpha +\mu )\{(1-p)X_1(\mu Y_1+r\alpha \sigma )+ r p b \sigma (\alpha +\mu )(\sigma +\mu )\} \\&\quad = (1-p)(q\alpha +\mu )X_1[(q\alpha +\mu )(\sigma +\mu )-rg\alpha \sigma ] + prg^2b\sigma \mu Y_1(\alpha +\mu ) \end{aligned}$$

which is formula (42). \(\square \)

Proof of formula (36)

$$\begin{aligned} \kappa <\kappa _1^\star \Leftrightarrow \kappa ^2 \mathcal A - 2\kappa \mathcal B + \mathcal C < 0 \end{aligned}$$
(43)

where

$$\begin{aligned}&\mathcal A = B_1^2 = g^2 (\phi _1+\phi _2 p)^2, \\&\mathcal B = g X_1(\alpha +\mu )(\eta _1+\eta _2 p), \\&\mathcal C \, {\text{ is}} \ {\text{ independent} \text{ of} } p,\\&\phi _1 = X_1 Z_1, \\&\phi _2 = r b \sigma (\alpha +\mu )(\sigma +\mu ) - X_1 Z_1, \\&\eta _1 = X_1[g\mu Y_1 Z_1 + (q\alpha +\mu )(\sigma +\mu )(r\alpha \sigma -\mu Y_1)], \\&\eta _2 = rb\sigma (\alpha +\mu )(\sigma +\mu )[(q\alpha +\mu )(\sigma +\mu )-g\mu Y_1]\\&\quad - X_1[g\mu Y_1 Z_1 + (q\alpha +\mu )(\sigma +\mu )(r\alpha \sigma -\mu Y_1)]. \end{aligned}$$

Inequality (43) is rewritten as

$$\begin{aligned} p^2 \xi _1 + 2 p \xi _2 + \xi _3 < 0 \end{aligned}$$

where

$$\begin{aligned} \xi _1&= \kappa ^2 g^2 \phi _2^2, \\ \xi _2&= \kappa ^2 g^2 \phi _1\phi _2 - \kappa g X_1(\alpha +\mu )\eta _2, \\ \xi _3&= \kappa ^2 g^2\phi _1^2 - 2\kappa g X_1 (\alpha +\mu )\eta _1 + \mathcal C . \end{aligned}$$

Thus \(p\) lies between \( \frac{-\xi _2 \pm \sqrt{\xi _2^2 - \xi _1\xi _3}}{\xi _1}\) \(\square \)

i.e., \( \frac{-[\kappa ^2 g^2 \phi _1\phi _2 - \kappa g X_1(\alpha +\mu )\eta _2] \pm \sqrt{\xi _2^2 - \xi _1\xi _3}}{\kappa ^2 g^2 \phi _2^2}.\)

As the upper root involves \(+\sqrt{\xi _2^2 - \xi _1\xi _3}>1\), we need to consider only the lower root. Hence

$$\begin{aligned} p_2^\star = \frac{\kappa g X_1(\alpha +\mu )\eta _2-\kappa ^2 g^2 \phi _1\phi _2 - \sqrt{\xi _2^2 - \xi _1\xi _3}}{\kappa ^2 g^2 \phi _2^2}. \end{aligned}$$

The term under the square root is

$$\begin{aligned} \Delta&= \xi _2^2 - \xi _1\xi _3 \\&= [\kappa ^2 g^2 \phi _1\phi _2 - \kappa g X_1(\alpha +\mu )\eta _2]^2 - {\kappa ^2 g^2 \phi _2^2}{[\kappa ^2 g^2\phi _1^2 - 2\kappa g X_1 (\alpha +\mu )\eta _1 + \mathcal C ]}\\&= g^2 \kappa ^2\left\{ [\kappa g \phi _1\phi _2 - X_1(\alpha +\mu )\eta _2]^2 - {\phi _2^2}{[\kappa ^2 g^2\phi _1^2 - 2\kappa g X_1 (\alpha +\mu )\eta _1 + \mathcal C ]} \right\} \\&= \kappa ^2[G_3^{\prime }+ \kappa G_4^{\prime }]\\&= \kappa ^2 g^2 X_1^2[G_3+ \kappa G_4], \end{aligned}$$

where

$$\begin{aligned} G_3^{\prime }&= g^2 [X_1^2(\alpha +\mu )^2\eta _2^2 - \phi _2^2 \mathcal C ] \\&= g^2 [X_1^2(\alpha +\mu )^2\eta _2^2 - \phi _2^2 X_1^2(\alpha +\mu )^2[(q\alpha +\mu )(\sigma +\mu )-g\mu Y_1]^2]\\&= g^2 X_1^2(\alpha +\mu )^2\left\{ \eta _2^2 - \phi _2^2 [(q\alpha +\mu )(\sigma +\mu )-g\mu Y_1]^2\right\} \\&= g^2 X_1^2 G_3,\\ G_4^{\prime }&= 2 g^3\phi _2X_1(\alpha +\mu )[\phi _2\eta _1 - \phi _1\eta _2]\\&= 4 g^3 X_1^2 Y_1 r b \sigma \mu (\alpha +\mu )^2(\sigma +\mu )\phi _2 [g Z_1 - (q\alpha +\mu )(\sigma +\mu )]\\&= g^2 X_1^2 G_4,\\ G_3&= (\alpha \!+\!\mu )^2\left\{ \eta _2 \!-\! \phi _2[(q\alpha \!+\!\mu )(\sigma \!+\!\mu )\!-\!g\mu Y_1]\right\} \left\{ \eta _2 \!+\! \phi _2[(q\alpha \!+\!\mu )(\sigma \!+\!\mu )\!-\!g\mu Y_1]\right\} \!,\\ G_4&= - 4 r b g\phi _2 \sigma \mu Y_1 (\alpha +\mu )^2(\sigma +\mu )[(q\alpha +\mu )(\sigma +\mu ) - gZ_1]. \end{aligned}$$

Note that

$$\begin{aligned} \kappa g X_1(\alpha +\mu )\eta _2-\kappa ^2 g^2 \phi _1\phi _2&= \kappa g X_1\left\{ (\alpha +\mu )\eta _2-\frac{\kappa g\phi _1\phi _2}{X_1}\right\} \\&= \kappa g X_1\left\{ (\alpha +\mu )\eta _2-{\kappa Z_1 g\phi _2}\right\} \\&= \kappa g X_1\left\{ G_1(\alpha +\mu ) + G_2 \kappa \right\} , \end{aligned}$$

where

$$\begin{aligned} G_1&= \eta _2 \\&= rb\sigma (\alpha +\mu )(\sigma +\mu )[(q\alpha +\mu )(\sigma +\mu )-g\mu Y_1]\\&- X_1[g\mu Y_1 Z_1 + (q\alpha +\mu )(\sigma +\mu )(r\alpha \sigma -\mu Y_1)]\\&= 2\mu Y_1(\sigma +\mu )[(q\alpha +\mu )X_1 - rgb\sigma (\alpha +\mu )] + \\&[rb\sigma (\alpha +\mu )(\sigma +\mu )-X_1Z_1][g\mu Y_1 +(q\alpha +\mu )(\sigma +\mu )]\\&= 2\mu Y_1(\sigma \!+\!\mu )[(q\alpha \!+\!\mu )X_1 \!-\! rgb\sigma (\alpha \!+\!\mu )] \!+\! \phi _2[g\mu Y_1 \!+\!(q\alpha \!+\!\mu )(\sigma \!+\!\mu )]\\&= 2\mu Y_1(\sigma \!+\!\mu )[(q\alpha \!+\!\mu )X_1 \!-\! rgb\sigma (\alpha \!+\!\mu )] \!-\! \frac{G_2}{g Z_1} [g\mu Y_1 \!+\!(q\alpha \!+\!\mu )(\sigma \!+\!\mu )],\\ G_2&= - g \phi _2 Z_1. \end{aligned}$$

Thus

$$\begin{aligned} p_2^\star&= \frac{\kappa g X_1\left\{ G_1(\alpha +\mu ) + G_2 \kappa - \sqrt{G_3 + \kappa G_4}\right\} }{\kappa ^2 g^2 \phi _2^2}\\&= \frac{ g X_1 Z_1^2 \left\{ G_1(\alpha +\mu ) + G_2 \kappa - \sqrt{G_3 + \kappa G_4}\right\} }{\kappa G_2^2}. \end{aligned}$$

Now, we evaluate \(G_3\). We have

$$\begin{aligned}&\eta _2 - \phi _2[(q\alpha +\mu )(\sigma +\mu )-g\mu Y_1]\\&\quad = rb\sigma (\alpha +\mu )(\sigma +\mu )[(q\alpha +\mu )(\sigma +\mu )-g\mu Y_1] \\&\qquad - X_1 [g\mu Y_1 (r\alpha \sigma + \mu Y_1) + (q\alpha +\mu )(\sigma +\mu )(r\alpha \sigma - \mu Y_1)] \\&\qquad - [rb\sigma (\alpha +\mu )(\sigma +\mu )-X_1(r\alpha \sigma + \mu Y_1)][(q\alpha +\mu )(\sigma +\mu ) - g\mu Y_1] \\&\quad = 2X_1\left[\mu Y_1(q\alpha +\mu )(\sigma +\mu ) - g\mu Y_1 (r\alpha \sigma + \mu Y_1)\right] \\&\quad = 2\mu X_1 Y_1\left[(q\alpha +\mu )(\sigma +\mu ) - g(r\alpha \sigma + \mu Y_1)\right], \end{aligned}$$

and

$$\begin{aligned}&\eta _2 + \phi _2[(q\alpha +\mu )(\sigma +\mu )-g\mu Y_1]\\&\quad = rb\sigma (\alpha +\mu )(\sigma +\mu )[(q\alpha +\mu )(\sigma +\mu )-g\mu Y_1] \\&\qquad - X_1 [g\mu Y_1 (r\alpha \sigma + \mu Y_1) + (q\alpha +\mu )(\sigma +\mu )(r\alpha \sigma - \mu Y_1)] \\&\qquad + [rb\sigma (\alpha +\mu )(\sigma +\mu )-X_1(r\alpha \sigma + \mu Y_1)][(q\alpha +\mu )(\sigma +\mu ) - g\mu Y_1] \\&\quad = 2rb\sigma (\alpha \!+\!\mu )(\sigma \!+\!\mu ){\left[(q\alpha \!+\!\mu )(\sigma \!+\!\mu ) \!-\! g\mu Y_1 \right]} \!-\! 2 r \alpha \sigma X_1(q\alpha \!+\!\mu )(\sigma \!+\!\mu )\\&\quad = 2r(\sigma +\mu )\left\{ b\sigma (\alpha +\mu ){\left[(q\alpha +\mu )(\sigma +\mu ) - g\mu Y_1 \right]} - \alpha \sigma X_1(q\alpha +\mu )\right\} . \end{aligned}$$

Hence,

$$\begin{aligned} G_3&= 4\mu Y_1(\sigma \!+\!\mu )(\alpha \!+\!\mu )^2\{r X_1[(q\alpha \!+\!\mu )(\sigma \!+\!\mu ) \!-\! g(r\alpha \sigma \!+\! \mu Y_1) ]\}\{\!-\! \alpha \sigma X_1 (q\alpha \!+\!\mu ) \\&+ b\sigma (\alpha +\mu )[(q\alpha +\mu )(\sigma +\mu ) - g\mu Y_1 ] \}. \end{aligned}$$

Note that

$$\begin{aligned}&\{r X_1[(q\alpha +\mu )(\sigma +\mu ) - g(r\alpha \sigma + \mu Y_1) ]\}\{- \alpha \sigma X_1 (q\alpha +\mu ) \\&\qquad +\, b\sigma (\alpha +\mu )[(q\alpha +\mu )(\sigma +\mu )- g\mu Y_1 ] \} \\&\quad = -\,[rg\alpha \sigma -(q\alpha +\mu )(\sigma +\mu )]\{rX_1 b\sigma (\alpha +\mu )[(q\alpha +\mu )(\sigma +\mu ) - g\mu Y_1]\\&\qquad -\,r\alpha \sigma X_1^2(q\alpha +\mu )\}+ rg\mu X_1 Y_1\{b\sigma (\alpha +\mu )[(q\alpha +\mu )(\sigma +\mu ) - g\mu Y_1]\\&\qquad -\,\alpha \sigma X_1(q\alpha \!+\!\mu )\}\!-\!X_1(q\alpha \!+\!\mu )[rg\alpha \sigma \!-\!(q\alpha \!+\!\mu )(\sigma \!+\!\mu )][rb\sigma (\alpha \!+\!\mu )(\sigma \!+\!\mu )\\&\qquad -\, X_1(r\alpha \sigma \!+\!\mu Y_1)]\!-\! \mu Y_1\{X_1[rg\alpha \sigma \!-\!(q\alpha \!+\!\mu )(\sigma \!+\!\mu )][(q\alpha \!+\!\mu )X_1\!-\!rgb\sigma (\alpha \!+\!\mu )] \\&\qquad -\, rg X_1 b\sigma (\alpha \!+\!\mu )[(q\alpha \!+\!\mu )(\sigma \!+\!\mu )\!-\!g\mu Y_1] \!+\! rg\alpha \sigma (q\alpha +\mu )X_1^2\}\\&\quad = -X_1(q\alpha +\mu )[rg\alpha \sigma -(q\alpha +\mu )(\sigma +\mu )][rb\sigma (\alpha +\mu )(\sigma +\mu )-X_1(r\alpha \sigma +\mu Y_1)]\\&\qquad +\mu Y_1\{(\sigma +\mu )[(q\alpha +\mu )X_1 - rgb\sigma (\alpha +\mu )]^2 -rg^2 b\sigma (\alpha +\mu )[rb\sigma (\alpha +\mu )(\sigma +\mu ) \\&\qquad -\,X_1(r\alpha \sigma +\mu Y_1)]\}\\&\quad = \mu Y_1 (\sigma +\mu ){[(q\alpha +\mu )X_1 - rgb\sigma (\alpha +\mu )]^2}-[rb\sigma (\alpha +\mu )(\sigma +\mu ) \\&\qquad -\,X_1(r\alpha \sigma + \mu Y_1)] {[X_1(q\alpha +\mu )(rg\alpha \sigma -(q\alpha +\mu )(\sigma +\mu )) +r g^2 b\sigma \mu Y_1 (\alpha +\mu )]} \\&\quad = \mu Y_1 (\sigma +\mu ){[(q\alpha +\mu )X_1 - rgb\sigma (\alpha +\mu )]^2}\\&\qquad -\,\phi _2 {[X_1(q\alpha +\mu )(rg\alpha \sigma -(q\alpha +\mu )(\sigma +\mu )) +r g^2 b\sigma \mu Y_1 (\alpha +\mu )]}. \end{aligned}$$

Thus,

$$\begin{aligned} G_3&= 4\mu Y_1(\sigma +\mu )(\alpha +\mu )^2\{\mu Y_1 (\sigma +\mu ){[(q\alpha +\mu )X_1 - rgb\sigma (\alpha +\mu )]^2}\\&+ \frac{G_2}{g Z_1} {[X_1(q\alpha +\mu )(rg\alpha \sigma -(q\alpha +\mu )(\sigma +\mu )) +r g^2 b\sigma \mu Y_1 (\alpha +\mu )]}\}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safan, M., Kretzschmar, M. & Hadeler, K.P. Vaccination based control of infections in SIRS models with reinfection: special reference to pertussis. J. Math. Biol. 67, 1083–1110 (2013). https://doi.org/10.1007/s00285-012-0582-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0582-1

Keywords

Mathematics Subject Classification (2010)

Navigation