Skip to main content
Log in

Comparison of Five Extraction Methods for Intracellular Metabolites of Salmonella typhimurium

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Salmonella enterica serovar typhimurium (S. typhimurium) causes food poisoning in human and animals. Its infection rate is the highest among all salmonella serotypes. Metabolomics is a potential way to study the pathogenesis of S. typhimurium via analysis of various small molecular substances. Due to the lack of a uniform protocol for the extraction of metabolites, we evaluated five commonly used extraction methods including cold methanol (CM), hot ethanol (HE), chloroform–methanol cocktail (CMC), perchloric acid (PCA), and alkali (AL) for their efficacy in extracting the intracellular metabolites of S. typhimurium. Samples were quenched in 60% methanol at − 40 °C, and then the five methods were used to extract the metabolites. After derivatization, all samples were analyzed on a gas chromatography–triple quadrupole mass spectrometry (GC–MS/MS). Our results suggest that CM and HE extraction methods provide the best compromise allowing identification of 98 and 95 metabolites in a single analysis. For targeted metabolome analysis, the optimal extraction method for alcohols and organic acids is HE. CMC preferentially extracted lipid metabolites. PCA is suitable for extraction of small molecular carbohydrates. The optimal extraction method for macromolecular carbohydrates is the CM method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bern C, Martines J, de Zoysa I, Glass RI (1992) The magnitude of the global problem of diarrhoeal disease: a ten-year update. Bull World Health Organization 70(6):705–714

    CAS  Google Scholar 

  2. Hendriksen RS, Vieira AR, Karlsmose S, Wong DMALF, Jensen AB, Wegener HC, Aarestrup FM (2011) Global monitoring of salmonella serovar distribution from the world health organization global foodborne infections network country data bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 8(8):887–900

    Article  PubMed  Google Scholar 

  3. Raamsdonk LM et al (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50

    Article  CAS  PubMed  Google Scholar 

  4. Gika H, Theodoridis GA, Plumb RS, Wilson ID (2014) Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal 87:12–25

    Article  CAS  PubMed  Google Scholar 

  5. Ramana P, Adams E, Augustijns P, Van Schepdael A (2015) Metabonomics and drug development vol 1277. Methods in Molecular Biology, 2015/02/14 edn

  6. Peng B, Li H, Peng XX (2015) Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein Cell 6:628–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ogbaga CC, Stepien P, Dyson BC, Rattray NJ, Ellis DI, Goodacre R, Johnson GN (2016) Biochemical analyses of sorghum varieties reveal differential responses to drought. PLoS ONE 11:e0154423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang X, Xie Y, Gao P, Zhang S, Tan H, Yang F, Lian R, Tian J, Xu G (2014) A metabolomics-based method for studying the effect of yfcC gene in Escherichia coli on metabolism. Anal Biochem 451:48–55

    Article  CAS  PubMed  Google Scholar 

  9. Kato M, Lin SJ (2014) Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair 23:49–58

    Article  CAS  PubMed  Google Scholar 

  10. Sapcariu SC, Kanashova T, Weindl D, Ghelfi J, Dittmar G, Hiller K (2014) Simultaneous extraction of proteins and metabolites from cells in culture. MethodsX 1:74–80

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mashego MR, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen JJ (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29:1–16

    Article  CAS  PubMed  Google Scholar 

  12. Maharjan RP, Ferenci T (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 313:145–154

    Article  PubMed  Google Scholar 

  13. Tanga T, Gaoa Q, Barrow P, Wanga M, Chenga A, Jiaa R, Zhu D, Chena S, Liua M, Sun K, Yang Q, Chen X (2015) Development and evaluation of live attenuated Salmonella vaccines in newly hatched duckings. Vaccine 33:5564–5571

    Article  CAS  Google Scholar 

  14. Yamamoto H, Fujimori T, Sato H, Ishikawa G, Kami K, Ohashi Y (2014) Statistical hypothesis testing of factor loading in principal component analysis and its application to metabolite set enrichment analysis. BMC Bioinform 15:51

    Article  Google Scholar 

  15. Sevin DC, Kuehne A, Zamboni N, Sauer U (2015) Biological insights through nontargeted metabolomics. Curr Opin Biotechnol 34:1–8

    Article  CAS  PubMed  Google Scholar 

  16. Park C, Yun S, Lee SY, Park K, Lee J (2012) Metabolic profiling of Klebsiella oxytoca: evaluation of methods for extraction of intracellular metabolites using UPLC/Q-TOF-MS. Appl Biochem Biotechnol 167:425–438

    Article  CAS  PubMed  Google Scholar 

  17. Duportet X, Aggio RBM, Carneiro S, Villas-Bôas SGJM (2012) The biological interpretation of metabolomic data can be misled by the extraction method used. Metabolomics 8:410–421

    Article  CAS  Google Scholar 

  18. Cohn EJ, McMeekin TL, Edsall JT, Weare JH (1934) Studies in the physical chemistry of amino acids, peptides and related substances. II. The solubility of α-amino acids in water and in alcohol—water mixtures. J Am Chem Soc 56(11):2270–2282

    Article  CAS  Google Scholar 

  19. Vanyushkina AA, Fisunov GY, Gorbachev AY, Kamashev DE, Govorun VM (2014) Metabolomic analysis of three Mollicute species. PLoS ONE 9:e89312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buchholz A, Hurlebaus J, Wandrey C, Takors R (2002) Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng 19:5–15

    Article  CAS  PubMed  Google Scholar 

  21. Buchholz A, Takors R, Wandrey C (2001) Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal Biochem 295:129–137

    Article  CAS  PubMed  Google Scholar 

  22. Shryock JC, Rubio R, Berne RM (1986) Extraction of adenine nucleotides from cultured endothelial cells. Anal Biochem 159:73–81

    Article  CAS  PubMed  Google Scholar 

  23. Stipetic LH, Dalby MJ, Davies RL, Morton FR, Ramage G, Burgess KE (2016) A novel metabolomic approach used for the comparison of Staphylococcus aureus planktonic cells and biofilm samples. Metabolomics 12:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Varik V, Oliveira SRA, Hauryliuk V, Tenson T (2017) HPLC-based quantification of bacterial housekeeping nucleotides and alarmone messengers ppGpp and pppGpp. Sci Rep 7:11022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dietmair S, Timmins NE, Gray PP, Nielsen LK, Kromer JO (2010) Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem 404:155–164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by the China Postdoctoral Science Foundation (Grant No. 2016M602691) and Sichuan Science & Technology Department Foundation (Grant No. 2017JY0240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Wang, C., Yang, L. et al. Comparison of Five Extraction Methods for Intracellular Metabolites of Salmonella typhimurium. Curr Microbiol 76, 1247–1255 (2019). https://doi.org/10.1007/s00284-019-01750-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01750-4

Navigation