Skip to main content
Log in

Identification and Characterization of an Autophagy-Related Gene Acatg12 in Acremonium chrysogenum

Current Microbiology Aims and scope Submit manuscript

Abstract

Autophagy is a highly conserved mechanism to overcome various stresses and recycle cytoplasmic components and organelles. Ubiquitin-like (UBL) protein Atg12 is a key protein involved in autophagosome formation through stimulation of Atg8 conjugation to phosphatidylethanolamine. Here, we describe the identification of the autophagy-related gene Acatg12, encoding an Atg12 homologous protein in the cephalosporin C producing fungus Acremonium chrysogenum. Disruption of Acatg12 impaired the delivery and degradation of eGFP-Atg8, indicating that the autophagic process was blocked. Meanwhile, conidiation was dramatically reduced in the Acatg12 disruption mutant (∆Acatg12). In contrast, cephalosporin C production was increased twofold in ∆Acatg12, but fungal growth was reduced after 6 days fermentation. Consistent with these results, the transcriptional level of the cephalosporin biosynthetic genes was increased in ∆Acatg12. The results extend our understanding of autophagy in filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 2(12 Suppl):1542–1552. https://doi.org/10.1038/sj.cdd.4401765

    Article  CAS  Google Scholar 

  2. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24(1):24–41. https://doi.org/10.1038/cr.2013.168

    Article  CAS  PubMed  Google Scholar 

  3. Shpilka T, Welter E, Borovsky N, Amar N, Shimron F, Peleg Y, Elazar Z (2015) Fatty acid synthase is preferentially degraded by autophagy upon nitrogen starvation in yeast. Proc Natl Acad Sci USA 112(5):1434–1439. https://doi.org/10.1073/pnas.1409476112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakatogawa H (2013) Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem 55:39–50. https://doi.org/10.1042/bse0550039

    Article  CAS  PubMed  Google Scholar 

  5. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395(6700):395–398. https://doi.org/10.1038/26506

    Article  CAS  PubMed  Google Scholar 

  6. Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E (1999) Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol Biol Cell 10(5):1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282(52):37298–37302. https://doi.org/10.1074/jbc.C700195200

    Article  CAS  PubMed  Google Scholar 

  8. Kuma A, Mizushima N, Ishihara N, Ohsumi Y (2002) Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 277(21):18619–18625. https://doi.org/10.1074/jbc.M111889200

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20(21):5971–5981. https://doi.org/10.1093/emboj/20.21.5971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ozcengiz G, Demain AL (2013) Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 31(2):287–311. https://doi.org/10.1016/j.biotechadv.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  11. Martin JF, Ullan RV, Garcia-Estrada C (2010) Regulation and compartmentalization of beta-lactam biosynthesis. Microb Biotechnol 3(3):285–299. https://doi.org/10.1111/j.1751-7915.2009.00123.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Evers ME, Trip H, van den Berg MA, Bovenberg RAL, Driessen AJM (2004) Compartmentalization and transport in beta-lactam antibiotics biosynthesis. Adv Biochem Eng Biotechnol 88:111–135. https://doi.org/10.1007/b99259

    Article  CAS  PubMed  Google Scholar 

  13. Schmitt EK, Hoff B, Kück U (2004) Regulation of cephalosporin biosynthesis. Adv Biochem Eng Biotechnol 88:1–43. https://doi.org/10.1007/b9925614

    Article  CAS  PubMed  Google Scholar 

  14. Bartoszewska M, Kiel JA, Bovenberg RA, Veenhuis M, van der Klei IJ (2011) Autophagy deficiency promotes beta-lactam production in Penicillium chrysogenum. Appl Environ Microbiol 77(4):1413–1422. https://doi.org/10.1128/AEM.01531-10

    Article  CAS  PubMed  Google Scholar 

  15. Wang H, Pan Y, Hu P, Zhu Y, Li J, Jiang X, Liu G (2014) The autophagy-related gene Acatg1 is involved in conidiation and cephalosporin production in Acremonium chrysogenum. Fungal Genet Biol 69:65–74. https://doi.org/10.1016/j.fgb.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  16. Liu J, Hao T, Hu P, Pan Y, Jiang X, Liu G (2017) Functional analysis of the selective autophagy related gene Acatg11 in Acremonium chrysogenum. Fungal Genet Biol 107:67–76. https://doi.org/10.1016/j.fgb.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  17. Long LK, Yang J, An Y, Liu G (2012) Disruption of a glutathione reductase encoding gene in Acremonium chrysogenum leads to reduction of its growth, cephalosporin production and antioxidative ability which is recovered by exogenous methionine. Fungal Genet Biol 49(2):114–122. https://doi.org/10.1016/j.fgb.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  18. Khang CH, Park S-Y, Rho H-S, Lee Y-H, Kang S (2006) Filamentous fungi (Magnaporthe grisea and Fusarium oxysporum). Methods Mol Biol 344:403–420. https://doi.org/10.1385/1-59745-131-2:403

    Article  CAS  PubMed  Google Scholar 

  19. Li F, Chung T, Pennington JG, Federico ML, Kaeppler HF, Kaeppler SM, Otegui MS, Vierstra RD (2015) Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 27(5):1389–1408. https://doi.org/10.1105/tpc.15.00158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurusu T, Koyano T, Hanamata S, Kubo T, Noguchi Y, Yagi C, Nagata N, Yamamoto T, Ohnishi T, Okazaki Y, Kitahata N, Ando D, Ishikawa M, Wada S, Miyao A, Hirochika H, Shimada H, Makino A, Saito K, Ishida H, Kinoshita T, Kurata N, Kuchitsu K (2014) OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy 10(5):878–888. https://doi.org/10.4161/auto.28279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mukaiyama H, Kajiwara S, Hosomi A, Giga-Hama Y, Tanaka N, Nakamura T, Takegawa K (2009) Autophagy-deficient Schizosaccharomyces pombe mutants undergo partial sporulation during nitrogen starvation. Microbiology 155:3816–3826. https://doi.org/10.1099/mic.0.034389-0

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Gao W, Pan Y, Liu G (2018) Metabolic engineering of Acremonium chrysogenum for improving cephalosporin C production independent of methionine stimulation. Microb Cell Fact 17(1):87. https://doi.org/10.1186/s12934-018-0936-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Juan F. Martín (Universidad de León, Spain) for providing the plasmid pJL43-RNAi. We thank Prof. Seogchan Kang (Penn State University, USA) and Prof. Xingzhong Liu (Institute of Microbiology, CAS) for providing plasmid pAg1-H3. This work was supported by grants from the National Natural Science Foundation of China (31670091) and Construction of the Registry and Database of Bioparts for Synthetic Biology of the Chinese Academy of Sciences (ZSYS-016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanmin Wei or Gang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 813 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., He, J., Gao, W. et al. Identification and Characterization of an Autophagy-Related Gene Acatg12 in Acremonium chrysogenum. Curr Microbiol 76, 545–551 (2019). https://doi.org/10.1007/s00284-019-01650-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01650-7

Navigation