Skip to main content
Log in

Hydrogenophaga carboriunda sp. nov., a Tertiary Butyl Alcohol-Oxidizing, Psychrotolerant Aerobe Derived from Granular-Activated Carbon (GAC)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-negative, rod-shaped bacterium was isolated from a mixed culture that degraded tert-butyl alcohol (TBA) in a granular-activated carbon (GAC) sample from a Biological-GAC reactor. Strain YZ2T was assigned to the Betaproteobacteria within the family Comamonadaceae based on 16S rRNA gene similarities. The nearest phylogenetic relative (95.0 % similarity) with a valid name was Hydrogenophaga taeniospiralis. The DNA G+C content was 66.4 mol%. DNA:DNA hybridization indicated that the level of relatedness to members of the genus Hydrogenophaga ranged from 1.1 to 10.8 %. The dominant cellular fatty acids were: 18:1 w7c (75 %), 16:0 (4.9 %), 17:0 (3.85 %), 18:0 (2.93 %), 11 methyl 18:1 w7c (2.69 %), Summed Feature 2 (2.27 %), and 18:0 3OH (1.35 %). The primary substrate used was TBA, which is a fuel oxygenate and groundwater contaminant. YZ2T was non-motile, without apparent flagella. It is a psychrotolerant, facultative aerobe that grew between pH 6.5 and 9.5, and 4 and 30 °C. The culture grew on and mineralized TBA at 4 °C, which is the first report of psychrotolerant TBA degradation. Hydrogen was used as an alternative electron donor. The culture also grew well in defined freshwater medium with ethanol, butanol, hydroxy isobutyric acid, acetate, pyruvate, citrate, lactate, isopropanol, and benzoic acid as electron donors. Nitrate was reduced with hydrogen as the sole electron donor. On the basis of morphological, physiological, and chemotaxonomic data, a new species, Hydrogenophaga carboriunda is proposed, with YZ2T as the type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bradley PM, Landmeyer JE (2006) Low-temperature MTBE biodegradation in aquifer sediments with a history of low, seasonal ground water temperatures. Groundw Monit Remediat 26:101–105

    Article  CAS  Google Scholar 

  2. Chung BS, Ryu SH, Park M, Jeon Y, Chung YR, Jeon CO (2007) Hydrogenophaga caeni sp nov., isolated from activated sludge. Int J Syst Evol Microbiol 57:1126–1130

    Article  CAS  PubMed  Google Scholar 

  3. Chung BS, Ryu SH, Park M, Jeon Y, Chung YR, Jeon CO (2007) Hydrogenophaga Caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 57:1126–1130

    Article  CAS  PubMed  Google Scholar 

  4. Contzen M, Moore ERB, Blumel S, Stolz A, Kampfer P (2000) Hydrogenophaga intermedia sp nov., a 4-aminobenzenesulfonate degrading organism. Syst Appl Microbiol 23:487–493

    Article  CAS  PubMed  Google Scholar 

  5. Deeb RA, Chu KH, Shih T, Linder S, Suffet I, Kavanaugh MC, Alvarez-Cohen L (2003) MTBE and other oxygenates: environmental sources, analysis, occurrence, and treatment. Environ Eng Sci 20:433–447

    Article  CAS  Google Scholar 

  6. Finneran KT, Lovley DR (2001) Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Environ Sci Technol 35:1785–1790

    Article  CAS  PubMed  Google Scholar 

  7. Francois A, Mathis H, Godefroy D, Piveteau P, Fayolle F, Monot F (2002) Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012. Appl Environ Microbiol 68:2754–2762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hatzinger PB, McClay K, Vainberg S, Tugusheva M, Condee CW, Steffan RJ (2001) Biodegradation of methyl tert-butyl ether by a pure bacterial culture. Appl Environ Microbiol 67:5601–5607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hayashi H, Sakamoto M, Benno Y (2004) Evaluation of three different forward primers by terminal restriction fragment length polymorphism analysis for determination of fecal Bifidobacterium spp. in healthy subjects. Microbiol Immunol 48:1–6

    Article  CAS  PubMed  Google Scholar 

  10. Hobbie JE, Daley RJ, Jasper S (1977) Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Johnson MJ, Thatcher E, Cox ME (1995) Techniques for controlling variability in gram staining of obligate anaerobes. J Clin Microbiol 33:755–758

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Kaempfer P, Schulze R, Jaeckel U, Malik KA, Amann R, Spring S (2005) Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 55:341–344

    Article  CAS  Google Scholar 

  13. Kampfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  14. Kampfer P, Schulze R, Jackel U, Malik KA, Amann R, Spring S (2005) Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 55:341–344

    Article  PubMed  Google Scholar 

  15. Kuykendall LD, Roy MA, Oneill JJ, Devine TE (1988) Fatty acids, antibioteic resistance, and DNA homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361

    Article  CAS  Google Scholar 

  16. Kwon MJ, Finneran KT (2006) Microbially-mediated hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) biodegradation by extracellular electron shuttling compounds. Appl Environ Microbiol 72:5933–5941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lambo AJ, Patel TR (2007) Biodegradation of polychlorinated biphenyls in Aroclor 1232 and production of metabolites from 2,4,4′-trichlorobiphenyl at low temperature by psychrotolerant Hydrogenophaga sp. strain IA3-A. J Appl Microbiol 102:1318–1329

    Article  CAS  PubMed  Google Scholar 

  18. Lambo AJ, Patel TR (2006) Cometabolic degradation of polychlorinated biphenyls at low temperature by psychrotolerant bacterium Hydrogenophaga sp. IA3-A. Curr Microbiol 53:48–52

    Article  CAS  PubMed  Google Scholar 

  19. Lambo AJ, Patel TR (2006) Isolation and characterization of a biphenyl-utilizing psychrotrophic bacterium, Hydrogenophaga taeniospiralis IA3-A, that cometabolize dichlorobiphenyls and polychlorinated biphenyl congeners in Aroclor 1221. J Basic Microbiol 46:94–107

    Article  CAS  PubMed  Google Scholar 

  20. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics (modern microbiological methods). Wiley, New York, pp 115–147

    Google Scholar 

  21. Lechner U, Brodkorb D, Geyer R, Hause G, Hartig C, Auling G, Fayolle-Guichard F, Piveteau P, Muller RH, Rohwerder T (2007) Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol 57:1295–1303

    Article  CAS  PubMed  Google Scholar 

  22. Miller LT (1982) Single derivitization method for routine analysis of bacterial whole cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Nakatsu CH, Hristova K, Hanada S, Meng X, Hanson JR, Scow KM, Kamagata Y (2006) Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int J Syst Evol Microbiol 56:983–989

    Article  CAS  PubMed  Google Scholar 

  24. Piveteau P, Fayolle F, Vandecasteele J-P, Monot F (2001) Biodegradation of tert-butyl alcohol and related xenobiotics by a methylotrophic bacterial isolate. Appl Microbiol Biotechnol 55:369–373

    Article  CAS  PubMed  Google Scholar 

  25. Reinauer KM, Zhang Y, Yang XM, Finneran KT (2008) Aerobic biodegradation of tert-butyl alcohol (TBA) by psychro- and thermo-tolerant cultures derived from granular activated carbon (GAC). Biodegradation 19:259–268

    Article  CAS  PubMed  Google Scholar 

  26. Stackebrandt E, Liesack W (1993) Nucleic acids and classification. In: Goodfellow M, O’Donnell AG (eds) Handbook of new bacterial systematics. Academic Press, London, pp 152–189

    Google Scholar 

  27. Steffan RJ, McClay K, Vainberg S, Condee CW, Zhang D (1997) Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol 63:4216–4222

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Steffan RJ, Vainberg S, Condee C, McClay K, Hatzinger P (2000) Biotreatment of MTBE with a new bacterial isolate. Battelle Press, Columbus

    Google Scholar 

  29. Streger SH, Vainberg S, Dong HL, Hatzinger PB (2002) Enhancing transport of Hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether. Appl Environ Microbiol 68:5571–5579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen E, Hoste B, Gillis M, Kersters K, Auling G, De Ley J (1989) Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga Flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 39:319–333

    Article  CAS  Google Scholar 

  31. Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen E, Hoste B, Gillis M, Kersters K, Auling G, Deley J (1989) Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseuodflava and Pseudomonas carboxydoflava), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 39:319–333

    Article  CAS  Google Scholar 

  32. Yoon JH, Kang SJ, Ryu SH, Jeon CO, Oh TK (2008) Hydrogenophaga bisanensis sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 58:393–397

    Article  CAS  PubMed  Google Scholar 

  33. Yoon K, Tsukada N, Sakai Y, Ishii M, Igarashi Y, Nisihara H (2008) Isolation and characterization of a new facultatively autotrophic hydrogen-oxidizing Betaproteobacterium, Hydrogenophaga sp. AH-24. FEMS Microbiol Lett 278:94–100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by British Petroleum, an Atlantic Richfield Company (BP/ARCO); we thank Xiaomin Yang of BP/ARCO for providing the GAC samples. We thank Rachel Whitaker and Angela Kent of the University of Illinois (Microbiology and Natural Resources, respectively) for suggestions regarding phylogenetic analyses. We also thank Cate Wallace of the Imaging Technology Group of Beckman Institute for Advanced Science and Technology at the University of Illinois and Lou Ann Miller of the University of Illinois for SEM microscopy and cell culture preparation for SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin T. Finneran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 249 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinauer, K.M., Popovic, J., Weber, C.D. et al. Hydrogenophaga carboriunda sp. nov., a Tertiary Butyl Alcohol-Oxidizing, Psychrotolerant Aerobe Derived from Granular-Activated Carbon (GAC). Curr Microbiol 68, 510–517 (2014). https://doi.org/10.1007/s00284-013-0501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0501-8

Keywords

Navigation