Skip to main content
Log in

Lactobacillus supplementation prevents cisplatin-induced cardiotoxicity possibly by inflammation inhibition

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Cardiotoxicity of chemotherapy exerts as the main hurdle for prognosis, while whether cisplatin causes severe cardiotoxicity remains largely unknown. Accumulating evidence reveals that intestinal microbiota functions importantly in nutrient metabolism and cardiovascular function. In this study, we observed the possible cardiotoxicity of cisplatin and explored the possible role of microbiota in the mouse model.

Methods

C57Bl6 mice were treated with 0, 3 or 6 mg/kg cisplatin via i.p. injection, together with or without Lactobacillus supplementation. Cardiac function was analyzed by echocardiography. Gut microbiota was analyzed by 16S RNA sequencing. Gene expression was analyzed by qPCR. The data differences were compared with Graphpad Prism 7.0.

Results

In comparison with the control group, 6 mg/kg per week cisplatin treatment for 3 weeks significantly decreased the body weight by about 33% (18.1 ± 2.1 vs 27.2 ± 0.9) and decreased the left ventricular ejection fraction by about 15% (0.57 ± 0.07 vs 0.67 ± 0.04). Together, the gut microbiota was found dramatically changed, manifested as 27% decrease of Firmicutes and increased pathological bacteria. Antibiotics treatment had no obvious beneficial effects on the body weight and cardiac function caused by cisplatin. However, Lactobacillus supplementation significantly increased the body weight and restored cardiac function, together with lower inflammation gene expression.

Conclusions

The study here has established a possible role of microbiota dysbiosis in cisplatin-associated toxic effects, while delivery of Lactobacillus would be beneficial for the cardiac function prevention possibly via inflammation control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albain KS, Swann RS, Rusch VW, Turrisi AT 3rd, Shepherd FA, Smith C, Chen Y, Livingston RB, Feins RH, Gandara DR, Fry WA, Darling G, Johnson DH, Green MR, Miller RC, Ley J, Sause WT, Cox JD (2009) Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. Lancet 374(9687):379–386. https://doi.org/10.1016/S0140-6736(09)60737-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Salazar MC, Rosen JE, Wang Z, Arnold BN, Thomas DC, Herbst RS, Kim AW, Detterbeck FC, Blasberg JD, Boffa DJ (2017) Association of delayed adjuvant chemotherapy with survival after lung cancer surgery. JAMA Oncol 3(5):610–619. https://doi.org/10.1001/jamaoncol.2016.5829

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alt A, Lammens K, Chiocchini C, Lammens A, Pieck JC, Kuch D, Hopfner KP, Carell T (2007) Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta. Science 318(5852):967–970. https://doi.org/10.1126/science.1148242

    Article  PubMed  CAS  Google Scholar 

  4. Long DF, Repta AJ (1981) Cisplatin: chemistry, distribution and biotransformation. Biopharm Drug Dispos 2(1):1–16

    Article  CAS  PubMed  Google Scholar 

  5. Linkermann A, Himmerkus N, Rolver L, Keyser KA, Steen P, Brasen JH, Bleich M, Kunzendorf U, Krautwald S (2011) Renal tubular Fas ligand mediates fratricide in cisplatin-induced acute kidney failure. Kidney Int 79(2):169–178. https://doi.org/10.1038/ki.2010.317

    Article  PubMed  CAS  Google Scholar 

  6. Ammer U, Natochin Y, David C, Rumrich G, Ullrich KJ (1993) Cisplatin nephrotoxicity: site of functional disturbance and correlation to loss of body weight. Renal Physiol Biochem 16(3):131–145

    PubMed  CAS  Google Scholar 

  7. Oun R, Rowan E (2017) Cisplatin induced arrhythmia; electrolyte imbalance or disturbance of the SA node? Eur J Pharmacol 811:125–128. https://doi.org/10.1016/j.ejphar.2017.05.063

    Article  PubMed  CAS  Google Scholar 

  8. Alexandre J, Molsehi JJ, Bersell KR, Funck-Brentano C, Roden DM, Salem JE (2018) Anticancer drug-induced cardiac rhythm disorders: current knowledge and basic underlying mechanisms. Pharmacol Ther 189:89–103. https://doi.org/10.1016/j.pharmthera.2018.04.009

    Article  PubMed  CAS  Google Scholar 

  9. Altena R, de Haas EC, Nuver J, Brouwer CA, van den Berg MP, Smit AJ, Postma A, Sleijfer DT, Gietema JA (2009) Evaluation of sub-acute changes in cardiac function after cisplatin-based combination chemotherapy for testicular cancer. Br J Cancer 100(12):1861–1866. https://doi.org/10.1038/sj.bjc.6605095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Pariente R, Pariente JA, Rodriguez AB, Espino J (2016) Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation. J Pineal Res 60(1):55–64. https://doi.org/10.1111/jpi.12288

    Article  PubMed  CAS  Google Scholar 

  11. Kothandapani A, Sawant A, Dangeti VS, Sobol RW, Patrick SM (2013) Epistatic role of base excision repair and mismatch repair pathways in mediating cisplatin cytotoxicity. Nucleic Acids Res 41(15):7332–7343. https://doi.org/10.1093/nar/gkt479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sancho-Martinez SM, Prieto-Garcia L, Prieto M, Lopez-Novoa JM, Lopez-Hernandez FJ (2012) Subcellular targets of cisplatin cytotoxicity: an integrated view. Pharmacol Ther 136(1):35–55. https://doi.org/10.1016/j.pharmthera.2012.07.003

    Article  PubMed  CAS  Google Scholar 

  13. Zhu W, Wang Z, Tang WHW, Hazen SL (2017) Gut microbe-generated trimethylamine N-oxide from dietary choline is prothrombotic in subjects. Circulation 135(17):1671–1673. https://doi.org/10.1161/CIRCULATIONAHA.116.025338

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shen S, Lim G, You Z, Ding W, Huang P, Ran C, Doheny J, Caravan P, Tate S, Hu K, Kim H, McCabe M, Huang B, Xie Z, Kwon D, Chen L, Mao J (2017) Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat Neurosci 20(9):1213–1216. https://doi.org/10.1038/nn.4606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, Chen Y, Chen H, Hong J, Zou W, Fang JY (2017) Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170(3):548–563 e516. https://doi.org/10.1016/j.cell.2017.07.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tang WH, Kitai T, Hazen SL (2017) Gut microbiota in cardiovascular health and disease. Circ Res 120(7):1183–1196. https://doi.org/10.1161/CIRCRESAHA.117.309715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519(7541):92–96. https://doi.org/10.1038/nature14232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Beck PL, Wong JF, Li Y, Swaminathan S, Xavier RJ, Devaney KL, Podolsky DK (2004) Chemotherapy- and radiotherapy-induced intestinal damage is regulated by intestinal trefoil factor. Gastroenterology 126(3):796–808. https://doi.org/10.1053/j.gastro.2003.12.004

    Article  PubMed  CAS  Google Scholar 

  19. Feng Q, Liu Z, Zhong S, Li R, Xia H, Jie Z, Wen B, Chen X, Yan W, Fan Y, Guo Z, Meng N, Chen J, Yu X, Zhang Z, Kristiansen K, Wang J, Xu X, He K, Li G (2016) Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease. Sci Rep 6:22525. https://doi.org/10.1038/srep22525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther PL, Eberl G, Berard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, Opolon P, Yessaad N, Vivier E, Ryffel B, Elson CO, Dore J, Kroemer G, Lepage P, Boneca IG, Ghiringhelli F, Zitvogel L (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342(6161):971–976. https://doi.org/10.1126/science.1240537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Urbaniak C, McMillan A, Angelini M, Gloor GB, Sumarah M, Burton JP, Reid G (2014) Effect of chemotherapy on the microbiota and metabolome of human milk, a case report. Microbiome 2:24. https://doi.org/10.1186/2049-2618-2-24

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sakai H, Sagara A, Arakawa K, Sugiyama R, Hirosaki A, Takase K, Jo A, Sato K, Chiba Y, Yamazaki M, Matoba M, Narita M (2014) Mechanisms of cisplatin-induced muscle atrophy. Toxicol Appl Pharmacol 278(2):190–199. https://doi.org/10.1016/j.taap.2014.05.001

    Article  PubMed  CAS  Google Scholar 

  23. Sakai H, Kimura M, Isa Y, Yabe S, Maruyama A, Tsuruno Y, Kai Y, Sato F, Yumoto T, Chiba Y, Narita M (2017) Effect of acute treadmill exercise on cisplatin-induced muscle atrophy in the mouse. Pflugers Archiv Eur J Physiol 469(11):1495–1505. https://doi.org/10.1007/s00424-017-2045-4

    Article  CAS  Google Scholar 

  24. Stypmann J, Engelen MA, Troatz C, Rothenburger M, Eckardt L, Tiemann K (2009) Echocardiographic assessment of global left ventricular function in mice. Lab Anim 43(2):127–137. https://doi.org/10.1258/la.2007.06001e

    Article  PubMed  CAS  Google Scholar 

  25. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. https://doi.org/10.1038/nature12820

    Article  PubMed  CAS  Google Scholar 

  26. Gregorio BM, De Souza DB, de Morais Nascimento FA, Pereira LM, Fernandes-Santos C (2016) The potential role of antioxidants in metabolic syndrome. Curr Pharm Des 22(7):859–869

    Article  CAS  PubMed  Google Scholar 

  27. Reina-Couto M, Vale L, Carvalho J, Bettencourt P, Albino-Teixeira A, Sousa T (2016) Resolving inflammation in heart failure: novel protective lipid mediators. Curr Drug Targ 17(10):1206–1223

    Article  CAS  Google Scholar 

  28. Xu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ, Ferrante AW Jr (2013) Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab 18(6):816–830. https://doi.org/10.1016/j.cmet.2013.11.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Casares C, Ramirez-Camacho R, Trinidad A, Roldan A, Jorge E, Garcia-Berrocal JR (2012) Reactive oxygen species in apoptosis induced by cisplatin: review of physiopathological mechanisms in animal models. Eur Arch Oto Rhino Laryngol 269(12):2455–2459. https://doi.org/10.1007/s00405-012-2029-0

    Article  Google Scholar 

  30. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  31. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, DiDonato AJ, Fu X, Hazen JE, Krajcik D, DiDonato JA, Lusis AJ, Hazen SL (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163(7):1585–1595. https://doi.org/10.1016/j.cell.2015.11.055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cao X (2017) Intestinal inflammation induced by oral bacteria. Science 358(6361):308–309. https://doi.org/10.1126/science.aap9298

    Article  PubMed  CAS  Google Scholar 

  33. Baumler AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535(7610):85–93. https://doi.org/10.1038/nature18849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3(4):213–223. https://doi.org/10.1016/j.chom.2008.02.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sandler B (1979) Lactobacillus for vulvovaginitis. Lancet 2(8146):791–792

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the technical help to Qianqian Chen and Jing Zhang from the Department of Ultrasound in Tangdu Hospital, Fourth Military Medical University.

Funding

This study was funded by NSFC81671690 to Yuan LJ, and Major Clinical Renovation Project, Tangdu Hospital (no. 2013LCYJ003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guodong Yang or Lijun Yuan.

Ethics declarations

Conflict of interest

Lianbi Zhao declares that she has no conflict of interest. Changyang Xing declares that he has no conflict of interest. Wenqi Sun declares that he has no conflict of interest. Guangli Hou declares that he has no conflict of interest. Guodong Yang declares that he has no conflict of interest. Lijun Yuan declares that she has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 505 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Xing, C., Sun, W. et al. Lactobacillus supplementation prevents cisplatin-induced cardiotoxicity possibly by inflammation inhibition. Cancer Chemother Pharmacol 82, 999–1008 (2018). https://doi.org/10.1007/s00280-018-3691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-018-3691-8

Keywords

Navigation