Skip to main content

Advertisement

Log in

The platelet NLRP3 inflammasome is upregulated in a murine model of pancreatic cancer and promotes platelet aggregation and tumor growth

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Platelets are activated in solid cancers, including pancreatic ductal adenocarcinoma (PDA), a highly aggressive malignancy with a devastating prognosis and limited therapeutic options. The mechanisms by which activated platelets regulate tumor progression are poorly understood. The nucleotide-binding domain leucine-rich repeat containing protein 3 (NLRP3) inflammasome is a key inflammatory mechanism recently identified in platelets, which controls platelet activation and aggregation. In an orthotopic PDA mouse model involving surgical implantation of Panc02 murine cancer cells into the tail of the pancreas, we show that the NLRP3 inflammasome in circulating platelets is upregulated in pancreatic cancer. Pharmacological inhibition or genetic ablation of NLRP3 in platelets resulted in decreased platelet activation, platelet aggregation, and tumor progression. Moreover, interfering with platelet NLRP3 signaling significantly improved survival of tumor-bearing mice. Hence, the platelet NLRP3 inflammasome plays a critical role in PDA and might represent a novel therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cronin KA, Lake AJ, Scott S, Sherman RL, Noone AM, Howlader N, Henley SJ, Anderson RN, Firth AU, Ma J, Kohler BA, Jemal A (2018) Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer 124(13):2785–2800. https://doi.org/10.1002/cncr.31551

    Article  PubMed  Google Scholar 

  2. Hausmann S, Kong B, Michalski C, Erkan M, Friess H (2014) The role of inflammation in pancreatic cancer. Adv Exp Med Biol 816:129–151. https://doi.org/10.1007/978-3-0348-0837-8_6

    Article  CAS  PubMed  Google Scholar 

  3. Kruger S, Haas M, Burkl C, Goehring P, Kleespies A, Roeder F, Gallmeier E, Ormanns S, Westphalen CB, Heinemann V, Rank A, Boeck S (2017) Incidence, outcome and risk stratification tools for venous thromboembolism in advanced pancreatic cancer - a retrospective cohort study. Thromb Res 157:9–15. https://doi.org/10.1016/j.thromres.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  4. Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernandez-Porras I, Canamero M, Rodriguez-Justo M, Serrano M, Barbacid M (2011) Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19(6):728–739. https://doi.org/10.1016/j.ccr.2011.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Daley D, Mani VR, Mohan N, Akkad N, Pandian G, Savadkar S, Lee KB, Torres-Hernandez A, Aykut B, Diskin B, Wang W, Farooq MS, Mahmud AI, Werba G, Morales EJ, Lall S, Wadowski BJ, Rubin AG, Berman ME, Narayanan R, Hundeyin M, Miller G (2017) NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med 214(6):1711–1724. https://doi.org/10.1084/jem.20161707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu H, Wang Y, Ding X, He Y, Lu Z, Wu P, Tian L, Yuan H, Liu D, Shi G, Xia T, Yin J, Cai B, Miao Y, Jiang K (2018) Long non-coding RNA XLOC_000647 suppresses progression of pancreatic cancer and decreases epithelial-mesenchymal transition-induced cell invasion by down-regulating NLRP3. Mol Cancer 17(1):18. https://doi.org/10.1186/s12943-018-0761-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A (2018) Role of the NLRP3 inflammasome in cancer. Mol Cancer 17(1):158. https://doi.org/10.1186/s12943-018-0900-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481(7381):278–286. https://doi.org/10.1038/nature10759

    Article  CAS  PubMed  Google Scholar 

  9. Hottz ED, Lopes JF, Freitas C, Valls-de-Souza R, Oliveira MF, Bozza MT, Da Poian AT, Weyrich AS, Zimmerman GA, Bozza FA, Bozza PT (2013) Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 122(20):3405–3414. https://doi.org/10.1182/blood-2013-05-504449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murthy P, Durco F, Miller-Ocuin JL, Takedai T, Shankar S, Liang X, Liu X, Cui X, Sachdev U, Rath D, Lotze MT, Zeh HJ 3rd, Gawaz M, Weber AN, Vogel S (2017) The NLRP3 inflammasome and bruton's tyrosine kinase in platelets co-regulate platelet activation, aggregation, and in vitro thrombus formation. Biochem Biophys Res Commun 483(1):230–236. https://doi.org/10.1016/j.bbrc.2016.12.161

    Article  CAS  PubMed  Google Scholar 

  11. Qiao J, Wu X, Luo Q, Wei G, Xu M, Wu Y, Liu Y, Li X, Zi J, Ju W, Fu L, Chen C, Wu Q, Zhu S, Qi K, Li D, Li Z, Andrews RK, Zeng L, Gardiner EE, Xu K (2018) NLRP3 regulates platelet integrin alphaIIbbeta3 outside-in signaling, hemostasis and arterial thrombosis. Haematologica. 103:1568–1576. https://doi.org/10.3324/haematol.2018.191700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vogel S, Arora T, Wang X, Mendelsohn L, Nichols J, Allen D, Shet AS, Combs CA, Quezado ZMN, Thein SL (2018) The platelet NLRP3 inflammasome is upregulated in sickle cell disease via HMGB1/TLR4 and Bruton tyrosine kinase. Blood Adv 2(20):2672–2680. https://doi.org/10.1182/bloodadvances.2018021709

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11(2):123–134. https://doi.org/10.1038/nrc3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Labelle M, Begum S, Hynes RO (2014) Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 111(30):E3053–E3061. https://doi.org/10.1073/pnas.1411082111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suzuki K, Aiura K, Ueda M, Kitajima M (2004) The influence of platelets on the promotion of invasion by tumor cells and inhibition by antiplatelet agents. Pancreas 29(2):132–140 doi:00006676-200408000-00008 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Song W, Tian C, Wang K, Zhang RJ, Zou SB (2017) Preoperative platelet lymphocyte ratio as independent predictors of prognosis in pancreatic cancer: a systematic review and meta-analysis. PLoS One 12(6):e0178762. https://doi.org/10.1371/journal.pone.0178762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Risch HA, Lu L, Streicher SA, Wang J, Zhang W, Ni Q, Kidd MS, Yu H, Gao YT (2017) Aspirin use and reduced risk of pancreatic cancer. Cancer Epidemiol Biomark Prev 26(1):68–74. https://doi.org/10.1158/1055-9965.EPI-16-0508

    Article  CAS  Google Scholar 

  18. Boone BA, Murthy P, Miller-Ocuin J, Doerfler WR, Ellis JT, Liang X, Ross MA, Wallace CT, Sperry JL, Lotze MT, Neal MD, Zeh HJ 3rd (2018) Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer 18(1):678. https://doi.org/10.1186/s12885-018-4584-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Franco AT, Corken A, Ware J (2015) Platelets at the interface of thrombosis, inflammation, and cancer. Blood 126(5):582–588. https://doi.org/10.1182/blood-2014-08-531582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Menter DG, Kopetz S, Hawk E, Sood AK, Loree JM, Gresele P, Honn KV (2017) Platelet “first responders” in wound response, cancer, and metastasis. Cancer Metastasis Rev 36(2):199–213. https://doi.org/10.1007/s10555-017-9682-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kovarova M, Hesker PR, Jania L, Nguyen M, Snouwaert JN, Xiang Z, Lommatzsch SE, Huang MT, Ting JP, Koller BH (2012) NLRP1-dependent pyroptosis leads to acute lung injury and morbidity in mice. J Immunol 189(4):2006–2016. https://doi.org/10.4049/jimmunol.1201065

    Article  CAS  PubMed  Google Scholar 

  22. Vogel S, Bodenstein R, Chen Q, Feil S, Feil R, Rheinlaender J, Schaffer TE, Bohn E, Frick JS, Borst O, Munzer P, Walker B, Markel J, Csanyi G, Pagano PJ, Loughran P, Jessup ME, Watkins SC, Bullock GC, Sperry JL, Zuckerbraun BS, Billiar TR, Lotze MT, Gawaz M, Neal MD (2015) Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 125(12):4638–4654. https://doi.org/10.1172/JCI81660

    Article  PubMed  PubMed Central  Google Scholar 

  23. Munzer P, Walker-Allgaier B, Geue S, Langhauser F, Geuss E, Stegner D, Aurbach K, Semeniak D, Chatterjee M, Gonzalez Menendez I, Marklin M, Quintanilla-Martinez L, Salih HR, Litchfield DW, Buchou T, Kleinschnitz C, Lang F, Nieswandt B, Pleines I, Schulze H, Gawaz M, Borst O (2017) CK2beta regulates thrombopoiesis and Ca(2+)-triggered platelet activation in arterial thrombosis. Blood 130(25):2774–2785. https://doi.org/10.1182/blood-2017-05-784413

    Article  CAS  PubMed  Google Scholar 

  24. Ding N, Chen G, Hoffman R, Loughran PA, Sodhi CP, Hackam DJ, Billiar TR, Neal MD (2014) Toll-like receptor 4 regulates platelet function and contributes to coagulation abnormality and organ injury in hemorrhagic shock and resuscitation. Circ Cardiovasc Genet 7(5):615–624. https://doi.org/10.1161/CIRCGENETICS.113.000398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morrell CN, Aggrey AA, Chapman LM, Modjeski KL (2014) Emerging roles for platelets as immune and inflammatory cells. Blood 123(18):2759–2767. https://doi.org/10.1182/blood-2013-11-462432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vogel S, Thein SL (2018) Platelets at the crossroads of thrombosis, inflammation and haemolysis. Br J Haematol 180(5):761–767. https://doi.org/10.1111/bjh.15117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang S, Hu L, Zhai L, Xue R, Ye J, Chen L, Cheng G, Mruk J, Kunapuli SP, Ding Z (2015) Nucleotide-binding oligomerization domain 2 receptor is expressed in platelets and enhances platelet activation and thrombosis. Circulation 131(13):1160–1170. https://doi.org/10.1161/CIRCULATIONAHA.114.013743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He Q, Fu Y, Tian D, Yan W (2018) The contrasting roles of inflammasomes in cancer. Am J Cancer Res 8(4):566–583

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin C, Zhang J (2017) Inflammasomes in inflammation-induced cancer. Front Immunol 8:271. https://doi.org/10.3389/fimmu.2017.00271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N, Lanyon G, Martin M, Fraumeni JF Jr, Rabkin CS (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404(6776):398–402. https://doi.org/10.1038/35006081

    Article  CAS  PubMed  Google Scholar 

  31. Li S, Liang X, Ma L, Shen L, Li T, Zheng L, Sun A, Shang W, Chen C, Zhao W, Jia J (2018) MiR-22 sustains NLRP3 expression and attenuates H. pylori-induced gastric carcinogenesis. Oncogene 37(7):884–896. https://doi.org/10.1038/onc.2017.381

    Article  CAS  PubMed  Google Scholar 

  32. Bae JY, Lee SW, Shin YH, Lee JH, Jahng JW, Park K (2017) P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. Oncotarget 8(30):48972–48982. https://doi.org/10.18632/oncotarget.16903

    Article  PubMed  PubMed Central  Google Scholar 

  33. Huang CF, Chen L, Li YC, Wu L, Yu GT, Zhang WF, Sun ZJ (2017) NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res 36(1):116. https://doi.org/10.1186/s13046-017-0589-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Kong H, Zeng X, Liu W, Wang Z, Yan X, Wang H, Xie W (2016) Activation of NLRP3 inflammasome enhances the proliferation and migration of A549 lung cancer cells. Oncol Rep 35(4):2053–2064. https://doi.org/10.3892/or.2016.4569

    Article  CAS  PubMed  Google Scholar 

  35. Ito M, Shichita T, Okada M, Komine R, Noguchi Y, Yoshimura A, Morita R (2015) Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun 6:7360. https://doi.org/10.1038/ncomms8360

    Article  PubMed  Google Scholar 

  36. Liu X, Pichulik T, Wolz OO, Dang TM, Stutz A, Dillen C, Delmiro Garcia M, Kraus H, Dickhofer S, Daiber E, Munzenmayer L, Wahl S, Rieber N, Kummerle-Deschner J, Yazdi A, Franz-Wachtel M, Macek B, Radsak M, Vogel S, Schulte B, Walz JS, Hartl D, Latz E, Stilgenbauer S, Grimbacher B, Miller L, Brunner C, Wolz C, Weber AN (2017) Human NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome activity is regulated by and potentially targetable through Bruton tyrosine kinase. J Allergy Clin Immunol 140:1054–1067.e10. https://doi.org/10.1016/j.jaci.2017.01.017

    Article  CAS  PubMed  Google Scholar 

  37. Masso-Valles D, Jauset T, Serrano E, Sodir NM, Pedersen K, Affara NI, Whitfield JR, Beaulieu ME, Evan GI, Elias L, Arribas J, Soucek L (2015) Ibrutinib exerts potent antifibrotic and antitumor activities in mouse models of pancreatic adenocarcinoma. Cancer Res 75(8):1675–1681. https://doi.org/10.1158/0008-5472.CAN-14-2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work for this article was performed while Drs. Brian A. Boone, Herbert J. Zeh III, and Sebastian Vogel were at University of Pittsburgh. The opinions expressed in this article are the authors’ own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government.

Funding

This work was supported by the U.S. National Institutes of Health (R01CA181450 to HJZ and MTL) and the German Research Foundation (DFG) KFO 274 (VO 2126/1-1 to SV and MG) and TRR 240 (374031971 to MG). The Nikon A1 confocal microscope used in this study was purchased with NIH grant 1S10OD019973-01 awarded to investigators at the University of Pittsburgh Center for Biologic Imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Vogel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted. All applicable international, national, and institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boone, B.A., Murthy, P., Miller-Ocuin, J.L. et al. The platelet NLRP3 inflammasome is upregulated in a murine model of pancreatic cancer and promotes platelet aggregation and tumor growth. Ann Hematol 98, 1603–1610 (2019). https://doi.org/10.1007/s00277-019-03692-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-019-03692-0

Keywords

Navigation