Skip to main content
Log in

Redox Processes Underlying the Vascular Repair Reaction

  • World Progress in Surgery
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Accumulating evidence indicates that vascular dysfunction in atherosclerosis, hypertension, and diabetes is either caused by or accompanied by oxidative stress in the vessel wall. In particular, the role of redox processes as mediators of vascular repair and contributors to post-angioplasty restenosis is increasingly evident. Yet the pathophysiology of such complex phenomena is still unclear. After vascular injury, activation of enzymes such as NADPH oxidase leads to a marked increase in superoxide generation, proportional to the degree of injury, which rapidly subsides. Such early superoxide production is significantly greater after stent deployment, as compared to balloon injury. Recent data suggest the persistence of low levels of oxidant stress during the vascular repair reaction in neointimal and medial layers. Despite the compensatory increase in expression of iNOS and nNOS, nitric oxide bioavailability is reduced because of increased reaction rates with superoxide, yielding as by-products reactive nitrogen/oxygen species that induce protein nitration. Concurrently, the activity of vascular superoxide dismutases exhibits a sustained decrease following injury. This decreased activity appears to be a key contributor to vasoconstrictive remodeling and a major determinant of the occurrence of nitrative/oxidative stress. Replenishment of superoxide dismutase (SOD), as well as treatment with vitamins C and E or the lipid-lowering drug probucol and its analogs, led to decrease in constrictive remodeling and improved vessel caliber. Better understanding of the redox pathophysiology of vascular repair should help clarify the pathogenesis of many other vascular conditions and may provide novel therapeutic strategies to prevent vascular lumen loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. MR Bennett (1999) ArticleTitleApoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture Cardiovasc. Res. 41 361–368 Occurrence Handle10.1016/S0008-6363(98)00212-0 Occurrence Handle1:CAS:528:DyaK1MXht12ru7w%3D Occurrence Handle10341835

    Article  CAS  PubMed  Google Scholar 

  2. H Cai DG Harrison (2000) ArticleTitleEndothelial dysfunction in cardiovascular diseases: the role of oxidant stress Circ. Res. 87 840–844 Occurrence Handle1:CAS:528:DC%2BD3cXoslygsrk%3D Occurrence Handle11073878

    CAS  PubMed  Google Scholar 

  3. DB Cowan BL Langille (1996) ArticleTitleCellular and molecular biology of vascular remodeling Curr. Opin. Lipidol. 7 94–100 Occurrence Handle1:CAS:528:DyaK28XjsVOisb4%3D Occurrence Handle8743902

    CAS  PubMed  Google Scholar 

  4. GH Gibbons VJ Dzau (1994) ArticleTitleThe emerging concept of vascular remodeling N. Engl. J. Med. 330 1431–1438 Occurrence Handle10.1056/NEJM199405193302008 Occurrence Handle1:STN:280:ByuB3M7isVI%3D Occurrence Handle8159199

    Article  CAS  PubMed  Google Scholar 

  5. DG Harrison (1997) ArticleTitleCellular and molecular mechanisms of endothelial cell dysfunction J. Clin. Invest. 100 2153–2157 Occurrence Handle1:CAS:528:DyaK2sXnt1Ggs74%3D Occurrence Handle9410891

    CAS  PubMed  Google Scholar 

  6. JM Isner (1994) ArticleTitleVascular remodeling. Honey, I think I shrunk the artery Circulation 89 2937–2941 Occurrence Handle1:STN:280:ByuB28rjsFI%3D Occurrence Handle7911405

    CAS  PubMed  Google Scholar 

  7. G Pasterkamp DP Kleijn Particlede C Borst (2000) ArticleTitleArterial remodeling in atherosclerosis, restenosis and after alteration of blood flow: potential mechanisms and clinical implications Cardiovasc. Res. 45 843–852 Occurrence Handle10.1016/S0008-6363(99)00377-6 Occurrence Handle1:CAS:528:DC%2BD3cXhtFalsLo%3D Occurrence Handle10728409

    Article  CAS  PubMed  Google Scholar 

  8. RS Schwartz EJ Topol PW Serruys et al. (1998) ArticleTitleArtery size, neointima, and remodeling: time for some standards J. Am. Coll. Cardiol. 32 2087–2094 Occurrence Handle10.1016/S0735-1097(98)00500-2 Occurrence Handle1:STN:280:DyaK1M%2FntlKjuw%3D%3D Occurrence Handle9857898

    Article  CAS  PubMed  Google Scholar 

  9. MR Ward G Pasterkamp AC Yeung et al. (2000) ArticleTitleArterial remodeling. Mechanisms and clinical implications Circulation 102 1186–1191 Occurrence Handle1:STN:280:DC%2BD3cvls1Kltw%3D%3D Occurrence Handle10973850

    CAS  PubMed  Google Scholar 

  10. A Zalewski Y Shi (1997) ArticleTitleVascular myofibroblasts. Lessons from coronary repair and remodeling Arterioscler. Thromb. Vasc. Biol. 17 417–422

    Google Scholar 

  11. LC Azevedo MA Pedro LC Souza et al. (2000) ArticleTitleOxidative stress as a signaling mechanism of the vascular response to injury: the redox hypothesis of restenosis Cardiovasc. Res. 47 436–445 Occurrence Handle10.1016/S0008-6363(00)00091-2 Occurrence Handle1:CAS:528:DC%2BD3cXlvFWitrk%3D Occurrence Handle10963717

    Article  CAS  PubMed  Google Scholar 

  12. AW Clowes MA Reidy MM Clowes (1983) ArticleTitleKinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium Lab. Invest. 49 327–333 Occurrence Handle1:STN:280:BiyB1MrlvFY%3D Occurrence Handle6887785

    CAS  PubMed  Google Scholar 

  13. AW Clowes MA Reidy MM Clowes (1983) ArticleTitleMechanisms of stenosis after arterial injury Lab. Invest. 49 208–215 Occurrence Handle1:STN:280:BiyB28bnvFY%3D Occurrence Handle6876748

    CAS  PubMed  Google Scholar 

  14. AW Clowes MM Clowes J Fingerle et al. (1989) ArticleTitleRegulation of smooth muscle cell growth in injured artery J. Cardiovasc. Pharmacol. 14 S12–S15

    Google Scholar 

  15. A Lafont LA Guzman PL Whitlow et al. (1995) ArticleTitleRestenosis after experimental angioplasty. Intimal, medial, and adventitial changes associated with constrictive remodeling Circ. Res. 76 996–1002 Occurrence Handle1:CAS:528:DyaK2MXlvVShtro%3D Occurrence Handle7758171

    CAS  PubMed  Google Scholar 

  16. J Kamenz W Seibold M Wohlfrom et al. (2000) ArticleTitleIncidence of intimal proliferation and apoptosis following balloon angioplasty in an atherosclerotic rabbit model Cardiovasc. Res. 45 766–776 Occurrence Handle10.1016/S0008-6363(99)00355-7 Occurrence Handle1:CAS:528:DC%2BD3cXltVGrtw%3D%3D Occurrence Handle10728399

    Article  CAS  PubMed  Google Scholar 

  17. MJ Pollman JL Hall GH Gibbons (1999) ArticleTitleDeterminants of vascular smooth muscle cell apoptosis after balloon angioplasty injury. Influence of redox state and cell phenotype Circ. Res. 84 113–121 Occurrence Handle1:CAS:528:DyaK1MXmslGhsQ%3D%3D Occurrence Handle9915780

    CAS  PubMed  Google Scholar 

  18. K Szocs B Lassegue D Sorescu et al. (2002) ArticleTitleUpregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury Arterioscler. Thromb. Vasc. Biol. 22 21–27

    Google Scholar 

  19. FR Laurindo HP Souza Particlede MA Pedro et al. (2002) ArticleTitleRedox aspects of vascular response to injury Methods Enzymol. 352 432–454 Occurrence Handle1:CAS:528:DC%2BD38XotFejsb4%3D Occurrence Handle12125370

    CAS  PubMed  Google Scholar 

  20. BH Strauss R Robinson WB Batchelor et al. (1996) ArticleTitleIn vivo collagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases Circ. Res. 79 541–550 Occurrence Handle1:CAS:528:DyaK28XlsVOnsrk%3D Occurrence Handle8781487

    CAS  PubMed  Google Scholar 

  21. ZS Galis JJ Khatri (2002) ArticleTitleMatrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly Circ. Res. 90 251–262 Occurrence Handle1:CAS:528:DC%2BD38Xhs1Wrsb4%3D Occurrence Handle11861412

    CAS  PubMed  Google Scholar 

  22. E Durand Z Mallat F Addad et al. (2002) ArticleTitleTime courses of apoptosis and cell proliferation and their relationship to arterial remodeling and restenosis after angioplasty in an atherosclerotic rabbit model J. Am. Coll. Cardiol. 39 1680–1685 Occurrence Handle10.1016/S0735-1097(02)01831-4 Occurrence Handle12020497

    Article  PubMed  Google Scholar 

  23. MJ Post C Borst RE Kuntz (1994) ArticleTitleThe relative importance of arterial remodeling compared with intimal hyperplasia in lumen renarrowing after balloon angioplasty. A study in the normal rabbit and the hypercholesterolemic Yucatan micropig Circulation 89 2816–2821 Occurrence Handle1:STN:280:ByuB28rjtl0%3D Occurrence Handle8205696

    CAS  PubMed  Google Scholar 

  24. Y Shi M Pieniek A Fard et al. (1996) ArticleTitleAdventitial remodeling after coronary arterial injury Circulation 93 340–348 Occurrence Handle1:STN:280:BymC3svktFc%3D Occurrence Handle8548908

    CAS  PubMed  Google Scholar 

  25. Y Shi JE O’Brien A Fard et al. (1996) ArticleTitleAdventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries Circulation 94 1655–1664 Occurrence Handle1:STN:280:BymH3sfks1w%3D Occurrence Handle8840858

    CAS  PubMed  Google Scholar 

  26. A Lafont E Durand JL Samuel et al. (1999) ArticleTitleEndothelial dysfunction and collagen accumulation: two independent factors for restenosis and constrictive remodeling after experimental angioplasty Circulation 100 1109–1115 Occurrence Handle1:STN:280:DyaK1Mvgs1GqtQ%3D%3D Occurrence Handle10477537

    CAS  PubMed  Google Scholar 

  27. BL Langille F O’Donnell (1986) ArticleTitleReductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent Science 231 405–407 Occurrence Handle1:STN:280:BimD1MnnvVU%3D Occurrence Handle3941904

    CAS  PubMed  Google Scholar 

  28. RD Rudic EG Shesely N Maeda et al. (1998) ArticleTitleDirect evidence for the importance of endothelium-derived nitric oxide in vascular remodeling J. Clin. Invest. 101 731–736 Occurrence Handle1:CAS:528:DyaK1cXht1Wrsbs%3D Occurrence Handle9466966

    CAS  PubMed  Google Scholar 

  29. AK Lau SB Leichtweis P Hume et al. (2003) ArticleTitleProbucol promotes functional reendothelialization in balloon-injured rabbit aortas Circulation 107 2031–2036 Occurrence Handle10.1161/01.CIR.0000062682.40051.43 Occurrence Handle1:CAS:528:DC%2BD3sXivVClurc%3D Occurrence Handle12681995

    Article  CAS  PubMed  Google Scholar 

  30. M Sata (2003) ArticleTitleCirculating vascular progenitor cells contribute to vascular repair, remodeling, and lesion formation Trends Cardiovasc. Med. 13 249–253 Occurrence Handle10.1016/S1050-1738(03)00106-3 Occurrence Handle12922022

    Article  PubMed  Google Scholar 

  31. DH Walter K Rittig FH Bahlmann et al. (2002) ArticleTitleStatin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells Circulation 105 3017–3024 Occurrence Handle10.1161/01.CIR.0000018166.84319.55 Occurrence Handle1:CAS:528:DC%2BD38XlslSjtrw%3D Occurrence Handle12081997

    Article  CAS  PubMed  Google Scholar 

  32. N Werner J Priller U Laufs et al. (2002) ArticleTitleBone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition Arterioscler. Thromb. Vasc. Biol. 22 1567–1572

    Google Scholar 

  33. T Finkel (2003) ArticleTitleOxidant signals and oxidative stress Curr. Opin. Cell Biol. 15 247–254 Occurrence Handle10.1016/S0955-0674(03)00002-4 Occurrence Handle1:CAS:528:DC%2BD3sXitV2msLo%3D Occurrence Handle12648682

    Article  CAS  PubMed  Google Scholar 

  34. T Finkel (2001) ArticleTitleReactive oxygen species and signal transduction IUBMB Life 52 3–6 Occurrence Handle10.1080/15216540252774694 Occurrence Handle1:CAS:528:DC%2BD38Xmt12luw%3D%3D Occurrence Handle11795590

    Article  CAS  PubMed  Google Scholar 

  35. C Kunsch RM Medford (1999) ArticleTitleOxidative stress as a regulator of gene expression in the vasculature Circ. Res. 85 753–766 Occurrence Handle1:CAS:528:DyaK1MXms1Kqsr4%3D Occurrence Handle10521248

    CAS  PubMed  Google Scholar 

  36. KK Griendling DG Harrison (1999) ArticleTitleDual role of reactive oxygen species in vascular growth Circ. Res. 85 562–563 Occurrence Handle1:CAS:528:DyaK1MXmtFaqs7Y%3D Occurrence Handle10488060

    CAS  PubMed  Google Scholar 

  37. KK Griendling D Sorescu B Lassegue et al. (2000) ArticleTitleModulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology Arterioscler. Thromb. Vasc. Biol. 20 2175–2183

    Google Scholar 

  38. K Irani (2000) ArticleTitleOxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling Circ. Res. 87 179–183 Occurrence Handle1:CAS:528:DC%2BD3cXlsFygsrg%3D Occurrence Handle10926866

    CAS  PubMed  Google Scholar 

  39. YJ Suzuki HJ Forman A Sevanian (1997) ArticleTitleOxidants as stimulators of signal transduction Free Radic. Biol. Med. 22 269–285 Occurrence Handle10.1016/S0891-5849(96)00275-4 Occurrence Handle1:CAS:528:DyaK28XnsVGju70%3D Occurrence Handle8958153

    Article  CAS  PubMed  Google Scholar 

  40. FR Laurindo PL Luz Particleda L Uint et al. (1991) ArticleTitleEvidence for superoxide radical-dependent coronary vasospasm after angioplasty in intact dogs Circulation 83 1705–1715 Occurrence Handle1:CAS:528:DyaK3MXkt1Ojs78%3D Occurrence Handle1850666

    CAS  PubMed  Google Scholar 

  41. M Janiszewski CA Pasqualucci LC Souza et al. (1998) ArticleTitleOxidized thiols markedly amplify the vascular response to balloon injury in rabbits through a redox active metal-dependent pathway Cardiovasc. Res. 39 327–338 Occurrence Handle10.1016/S0008-6363(98)00082-0 Occurrence Handle1:CAS:528:DyaK1cXltFegtLc%3D Occurrence Handle9798518

    Article  CAS  PubMed  Google Scholar 

  42. HP Souza LC Souza VM Anastacio et al. (2000) ArticleTitleVascular oxidant stress early after balloon injury: evidence for increased NAD(P)H oxidoreductase activity Free Radic. Biol. Med. 28 1232–1242 Occurrence Handle10.1016/S0891-5849(00)00240-9 Occurrence Handle1:CAS:528:DC%2BD3cXkslSisbY%3D Occurrence Handle10889453

    Article  CAS  PubMed  Google Scholar 

  43. PF Leite A Danilovic P Moriel et al. (2003) ArticleTitleSustained decrease in superoxide dismutase activity underlies constrictive remodeling after balloon injury in rabbits Arterioscler. Thromb. Vasc. Biol. 23 2197–2202

    Google Scholar 

  44. GA Ferns L Forster A Stewart-Lee et al. (1992) ArticleTitleProbucol inhibits neointimal thickening and macrophage accumulation after balloon injury in the cholesterol-fed rabbit Proc. Natl. Acad. Sci. U. S. A. 89 11312–11316 Occurrence Handle1:CAS:528:DyaK3sXntlCisQ%3D%3D Occurrence Handle1454812

    CAS  PubMed  Google Scholar 

  45. K Tanaka K Hayashi T Shingu et al. (1998) ArticleTitleProbucol inhibits neointimal formation in carotid arteries of normocholesterolemic rabbits and the proliferation of cultured rabbit vascular smooth muscle cells Cardiovasc. Drugs Ther. 12 19–28

    Google Scholar 

  46. GL Nunes DS Sgoutas RA Redden et al. (1995) ArticleTitleCombination of vitamins C and E alters the response to coronary balloon injury in the pig Arterioscler. Thromb. Vasc. Biol. 15 156–165

    Google Scholar 

  47. JC Tardif G Cote J Lesperance et al. (1997) ArticleTitleProbucol and multivitamins in the prevention of restenosis after coronary angioplasty. Multivitamins and Probucol Study Group N. Engl. J. Med. 337 365–372 Occurrence Handle10.1056/NEJM199708073370601 Occurrence Handle1:CAS:528:DyaK2sXls1elu7k%3D Occurrence Handle9241125

    Article  CAS  PubMed  Google Scholar 

  48. G Cote JC Tardif J Lesperance et al. (1999) ArticleTitleEffects of probucol on vascular remodeling after coronary angioplasty. Multivitamins and Probucol Study Group Circulation 99 30–35 Occurrence Handle1:CAS:528:DyaK1MXnsFCksg%3D%3D Occurrence Handle9884376

    CAS  PubMed  Google Scholar 

  49. JC Tardif (2003) ArticleTitleClinical results with AGI-1067: a novel antioxidant vascular protectant Am. J. Cardiol. 91 41A–49A Occurrence Handle10.1016/S0002-9149(02)03149-1 Occurrence Handle1:CAS:528:DC%2BD3sXitVWksL8%3D Occurrence Handle12645643

    Article  CAS  PubMed  Google Scholar 

  50. JC Tardif J Gregoire L Schwartz et al. (2003) ArticleTitleEffects of AGI-1067 and probucol after percutaneous coronary interventions Circulation 107 552–558 Occurrence Handle10.1161/01.CIR.0000047525.58618.3C Occurrence Handle1:CAS:528:DC%2BD3sXmsFCruw%3D%3D Occurrence Handle12566365

    Article  CAS  PubMed  Google Scholar 

  51. KK Griendling D Sorescu M Ushio-Fukai (2000) ArticleTitleNAD(P)H oxidase: role in cardiovascular biology and disease Circ. Res. 86 494–501 Occurrence Handle1:CAS:528:DC%2BD3cXitFWhu7g%3D Occurrence Handle10720409

    CAS  PubMed  Google Scholar 

  52. B Lassegue RE Clempus (2003) ArticleTitleVascular NAD(P)H oxidases: specific features, expression, and regulation Am. J. Physiol. Regul. Integr. Comp Physiol 285 R277–R297 Occurrence Handle1:CAS:528:DC%2BD3sXmsVagt7w%3D Occurrence Handle12855411

    CAS  PubMed  Google Scholar 

  53. B Lassegue D Sorescu K Szocs et al. (2001) ArticleTitleNovel gp91(phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways Circ. Res. 88 888–894 Occurrence Handle1:CAS:528:DC%2BD3MXjs1Gjurg%3D Occurrence Handle11348997

    CAS  PubMed  Google Scholar 

  54. GM Jacobson HM Dourron J Liu et al. (2003) ArticleTitleNovel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery Circ. Res. 92 637–643 Occurrence Handle10.1161/01.RES.0000063423.94645.8A Occurrence Handle1:CAS:528:DC%2BD3sXitlKnsbY%3D Occurrence Handle12609967

    Article  CAS  PubMed  Google Scholar 

  55. S Spiekermann U Landmesser S Dikalov et al. (2003) ArticleTitleElectron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation Circulation 107 1383–1389 Occurrence Handle10.1161/01.CIR.0000056762.69302.46 Occurrence Handle1:CAS:528:DC%2BD3sXhslGjsb0%3D Occurrence Handle12642358

    Article  CAS  PubMed  Google Scholar 

  56. R Harrison (2002) ArticleTitleStructure and function of xanthine oxidoreductase: where are we now? Free Radic. Biol. Med. 33 774–797 Occurrence Handle10.1016/S0891-5849(02)00956-5 Occurrence Handle1:CAS:528:DC%2BD38Xms1ymt7k%3D Occurrence Handle12208366

    Article  CAS  PubMed  Google Scholar 

  57. U Hink H Li H Mollnau et al. (2001) ArticleTitleMechanisms underlying endothelial dysfunction in diabetes mellitus Circ. Res. 88 E14–E22 Occurrence Handle1:CAS:528:DC%2BD3MXhtVaitrg%3D Occurrence Handle11157681

    CAS  PubMed  Google Scholar 

  58. D Jourd’heuil FL Jourd’heuil PS Kutchukian et al. (2001) ArticleTitleReaction of superoxide and nitric oxide with peroxynitrite. Implications for peroxynitrite-mediated oxidation reactions in vivo J. Biol. Chem. 276 28799–28805 Occurrence Handle10.1074/jbc.M102341200 Occurrence Handle1:CAS:528:DC%2BD3MXlvFSrurY%3D Occurrence Handle11373284

    Article  CAS  PubMed  Google Scholar 

  59. N Kuzkaya N Weissmann DG Harrison et al. (2003) ArticleTitleInteractions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase J. Biol. Chem. 278 22546–22554 Occurrence Handle10.1074/jbc.M302227200 Occurrence Handle1:CAS:528:DC%2BD3sXksF2itr4%3D Occurrence Handle12692136

    Article  CAS  PubMed  Google Scholar 

  60. U Landmesser S Dikalov SR Price et al. (2003) ArticleTitleOxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension J. Clin. Invest. 111 1201–1209 Occurrence Handle10.1172/JCI200314172 Occurrence Handle1:CAS:528:DC%2BD3sXjtFCrs7o%3D Occurrence Handle12697739

    Article  CAS  PubMed  Google Scholar 

  61. JS McNally ME Davis DP Giddens et al. (2003) ArticleTitleRole of xanthine oxidoreductase and the NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress Am. J. Physiol Heart Circ. Physiol 285 H2290–H2297 Occurrence Handle1:CAS:528:DC%2BD2cXhtl2h Occurrence Handle12958034

    CAS  PubMed  Google Scholar 

  62. MO Laukkanen A Kivela T Rissanen et al. (2002) ArticleTitleAdenovirus-mediated extracellular superoxide dismutase gene therapy reduces neointima formation in balloon-denuded rabbit aorta Circulation 106 1999–2003 Occurrence Handle10.1161/01.CIR.0000031331.05368.9D Occurrence Handle1:CAS:528:DC%2BD38XnsVarsbs%3D Occurrence Handle12370226

    Article  CAS  PubMed  Google Scholar 

  63. CL Fattman LM Schaefer TD Oury (2003) ArticleTitleExtracellular superoxide dismutase in biology and medicine Free Radic. Biol. Med. 35 236–256 Occurrence Handle10.1016/S0891-5849(03)00275-2 Occurrence Handle1:CAS:528:DC%2BD3sXls1Omsbk%3D Occurrence Handle12885586

    Article  CAS  PubMed  Google Scholar 

  64. T Fukai RJ Folz U Landmesser et al. (2002) ArticleTitleExtracellular superoxide dismutase and cardiovascular disease Cardiovasc. Res. 55 239–249 Occurrence Handle10.1016/S0008-6363(02)00328-0 Occurrence Handle1:CAS:528:DC%2BD38Xlt12ks7s%3D Occurrence Handle12123763

    Article  CAS  PubMed  Google Scholar 

  65. P Stralin K Karlsson BO Johansson et al. (1995) ArticleTitleThe interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase Arterioscler. Thromb. Vasc. Biol. 15 2032–2036

    Google Scholar 

  66. PF Li R Dietz R Harsdorf Particlevon (1997) ArticleTitleDifferential effect of hydrogen peroxide and superoxide anion on apoptosis and proliferation of vascular smooth muscle cells Circulation 96 3602–3609

    Google Scholar 

  67. FJ Miller SuffixJr DD Gutterman CD Rios et al. (1998) ArticleTitleSuperoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis Circ. Res. 82 1298–1305 Occurrence Handle1:CAS:528:DyaK1cXktFCgtrk%3D Occurrence Handle9648726

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments.

Work from our laboratory was supported by FAPESP, FINEP/Pronex, and Fundação Zerbini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco R.M. Laurindo M.D., Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leite, P., Liberman, M., Sandoli de Brito, F. et al. Redox Processes Underlying the Vascular Repair Reaction. World J. Surg. 28, 331–336 (2004). https://doi.org/10.1007/s00268-003-7399-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-003-7399-4

Keywords

Navigation