Skip to main content

Advertisement

Log in

Towards Mechanistic Hydrological Limits: A Literature Synthesis to Improve the Study of Direct Linkages between Sediment Transport and Periphyton Accrual in Gravel-Bed Rivers

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Altered hydrological, sediment, and nutrient regimes can lead to dramatic increases in periphyton abundance in rivers below impoundments. Flushing flows are a commonly adopted strategy to manage the excess periphyton that can accumulate, but in practice they often prove ineffective. Designing hydrological regimes that include flushing flows may be overlooking key processes in periphyton removal, particularly the role of abrasion and molar action induced by substrate movement. Setting flow targets which aim to initiate substrate movement are likely to improve periphyton removal, but an understanding of the site-specific thresholds for substrate entrainment and periphyton removal is required. Despite decades of entrainment studies accurate and consistent measurement and prediction of substrate entrainment remains elusive, making it challenging to study the relationship between substrate movement and periphyton removal, and to set flow targets. This paper makes a case for using substrate entrainment and transport thresholds as the target metric for flushing flows to manage excess periphyton accrual. This paper critically reviews the determinants of periphyton accrual and associated management methods. This paper also aims to provide a reference for interdisciplinary research on periphyton removal by summarising the geomorphic and hydraulic literature on methods for estimating and measuring substrate entrainment and transport. This will provide a basis for ecologists to identify tools for quantifying entrainment and transport thresholds so they are better placed to explore the direct linkages between phases of sediment transport and periphyton accrual. These linkages need to be identified in order for river managers to set effective flushing flow targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aberle J, Nikora V (2006) Statistical properties of armored gravel bed surfaces. Water Resour Res 42:1–11. https://doi.org/10.1029/2005WR004674

    Article  Google Scholar 

  • Adams J (1979) Gravel size analysis from photographs. J Hydraul Div 105:1247–1255

    Google Scholar 

  • Adin A, Alon G (1986) Mechanisms and process parameters of filter screens. J Irrig Drain Eng 112:293–304

    Article  Google Scholar 

  • Alfadhli I, Yang S-Q (2014) Influence of vertical motion on initiation of sediment movement. J Water Resour Prot 6:1666–1681

    Article  Google Scholar 

  • Andrews ED (1983) Entrainment of gravel from naturally sorted riverbed material. Geol Soc Am Bull 94:1225–1231. doi:Doi 10.1130/0016-7606(1983)94<1225:Eogfns>2.0.Co;2

    Article  Google Scholar 

  • Ashworth PJ, Ferguson RI (1989) Size‐selective entrainment of bed load in gravel bed streams. Water Resour Res 25:627–634. https://doi.org/10.1029/WR025i004p00627

    Article  Google Scholar 

  • Baker PD et al. (2001) Preliminary evidence of toxicity associated with the benthic cyanobacterium Phormidium in South Australia. Environ Toxicol 16:506–511

    Article  CAS  Google Scholar 

  • Barrière J, Krein A, Oth A, Schenkluhn R (2015) An advanced signal processing technique for deriving grain size information of bedload transport from impact plate vibration measurements. Earth Surf Process Landf 40:913–924. https://doi.org/10.1002/esp.3693

    Article  Google Scholar 

  • Bertin S, Friedrich H (2016) Field application of close-range digital photogrammetry (CRDP) for grain-scale fluvial morphology studies. Earth Surf Process Landf 41:1358–1369. https://doi.org/10.1002/esp.3906

    Article  Google Scholar 

  • Bertin S, Friedrich H (2018) Effect of surface texture and structure on the development of stable fluvial armors. Geomorphology 306:64–79

    Article  Google Scholar 

  • Bertin S, Groom J, Friedrich H (2017) Isolating roughness scales of gravel‐bed patches. Water Resour Res: 6841–6856. https://doi.org/10.1002/2016WR020205

    Article  Google Scholar 

  • Biggs BJ, Gerbeaux P (1993) Periphyton development in relation to macro‐scale (geology) and micro‐scale (velocity) limiters in two gravel‐bed rivers, New Zealand. NZ J Mar Freshw Res 27:39–53

    Article  Google Scholar 

  • Biggs BJ, Goring DG, Nikora VI (1998) Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. J Phycol 34:598–607. https://doi.org/10.1046/j.1529-8817.1998.340598.x

    Article  Google Scholar 

  • Biggs BJ, Smith RA, Duncan MJ (1999) Velocity and sediment disturbance of periphyton in headwater streams: biomass and metabolism. J North Am Benthol Soc 18:222–241. https://doi.org/10.2307/1468462

    Article  Google Scholar 

  • Biggs BJF (1985) Algae, a blooming nuisance in rivers. Soil Water 21:27–31

    Google Scholar 

  • Biggs BJF (1990) Periphyton communities and their environments in New Zealand rivers. NZ J Mar Freshw Res 24:367–386. https://doi.org/10.1080/00288330.1990.9516431

    Article  Google Scholar 

  • Billi P (1988) A note on cluster bedform behaviour in a gravel-bed river. Catena 15:473–481. https://doi.org/10.1016/0341-8162(88)90065-3

    Article  Google Scholar 

  • Booker DJ (2013) Spatial and temporal patterns in the frequency of events exceeding three times the median flow (FRE3) across New Zealand. J Hydrol 52:15–39

    Google Scholar 

  • Bourassa N, Cattaneo A (1998) Control of periphyton biomass in Laurentian streams (Quebec). J North Am Benthol Soc 17:420–429. https://doi.org/10.2307/1468363

    Article  Google Scholar 

  • Brasington J, Vericat D, Rychkov I (2012) Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resour Res 48:1–11. https://doi.org/10.1029/2012wr012223

    Article  Google Scholar 

  • Brayshaw AC,(1985) Bed microtopography and entrainment thresholds in gravel-bed rivers Geol Soc Am Bull 96:218–223https://doi.org/10.1130/0016-7606(1985)962.0.Co;2

    Article  Google Scholar 

  • Brodu N, Lague D (2012) 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology. ISPRS J Photogramm Remote Sens 68:121–134. https://doi.org/10.1016/j.isprsjprs.2012.01.006

    Article  Google Scholar 

  • Buffington JM, Dietrich WE, Kirchner JW (1992) Friction angle measurements on a naturally formed gravel streambed: implications for critical boundary shear stress. Water Resour Res 28:411–425. https://doi.org/10.1029/91WR02529

    Article  Google Scholar 

  • Buffington JM, Montgomery DR (1997) A systematic analysis of eight decades of incipient motion studies, with special reference to gravel‐bedded rivers. Water Resour Res 33:1993–2029

    Article  Google Scholar 

  • Bunte K, Abt SR (2003) Sampler size and sampling time affect bed load transport rates and particle sizes measured with bed load traps in gravel-bed streams. Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances: 283:126–133

  • Carbonneau PE, Dietrich JT (2017) Cost-effective non-metric photogrammetry from consumer-grade sUAS: implications for direct georeferencing of structure from motion photogrammetry. Earth Surf Process Landf 42:473–486. https://doi.org/10.1002/esp.4012

    Article  Google Scholar 

  • Carbonnneau P, Bizzi S, Marchetti G (2018) Robotic photosieving from low‐cost multirotor sUAS: a proof‐of‐concept. Earth Surf Process Landf 43:1160–1166. doi:0.1002/esp.4298

    Article  Google Scholar 

  • Carling PA (1983) Threshold of coarse sediment transport in broad and narrow natural streams. Earth Surf Process Landf 8:1–18. https://doi.org/10.1002/esp.3290080102

    Article  Google Scholar 

  • Cassel M, Dépret T, Piégay H (2017) Assessment of a new solution for tracking pebbles in rivers based on active RFID. Earth Surf Process Landf. https://doi.org/10.1002/esp.4152

    Article  Google Scholar 

  • Chen X, Chiew Y-M (2004) Velocity distribution of turbulent open-channel flow with bed suction. J Hydraul Eng 130:140–148. https://doi.org/10.1061/(Asce)0733-9429(2004)130:2(140)

    Article  Google Scholar 

  • Chen Y-C, Kao S-P, Wu J-H (2014) Measurement of stream cross section using ground penetration radar with Hilbert–Huang transform. Hydrol Process 28:2468–2477. https://doi.org/10.1002/hyp.9755

    Article  Google Scholar 

  • Church M, Hassan MA, Wolcott JF (1998) Stabilizing self-organized structures in gravel-bed stream channels: field and experimental observations. Water Resour Res 34:3169–3179. https://doi.org/10.1029/98wr00484

    Article  Google Scholar 

  • Clausen B, Biggs B (1997) Relationships between benthic biota and hydrological indices in New Zealand streams. Freshw Biol 38:327–342. https://doi.org/10.1046/j.1365-2427.1997.00230.x

    Article  Google Scholar 

  • Davie AW, Mitrovic SM (2014) Benthic algal biomass and assemblage changes following environmental flow releases and unregulated tributary flows downstream of a major storage. Mar Freshw Res 65:1059–1071. https://doi.org/10.1071/MF13225

    Article  Google Scholar 

  • de Haas T, Ventra D, Carbonneau PE, Kleinhans MG (2014) Debris-flow dominance of alluvial fans masked by runoff reworking and weathering. Geomorphology 217:165–181

    Article  Google Scholar 

  • de Jalón DG et al. (2017) Linking environmental flows to sediment dynamics. Water Policy 19:358–375

    Article  Google Scholar 

  • Death RG, Winterbourn MJ (1995) Diversity patterns in stream benthic invertebrate communities: the influence of habitat stability. Ecology 76:1446–1460. https://doi.org/10.2307/1938147

    Article  Google Scholar 

  • Deshpande V, Kumar B (2016) Turbulent flow structures in alluvial channels with curved cross-sections under conditions of downward seepage. Earth Surf Process Landf 41:1073–1087. https://doi.org/10.1002/esp.3889

    Article  Google Scholar 

  • Dey S, Nath TK (2009) Turbulence characteristics in flows subjected to boundary injection and suction. J Eng Mech 136:877–888

    Article  Google Scholar 

  • Dietrich JT (2016) Bathymetric Structure-from-Motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surf Process Landf 42:355–364. https://doi.org/10.1002/esp.4060

    Article  Google Scholar 

  • Downes BJ, Lake PS, Glaister A, Webb JA (1998) Scales and frequencies of disturbances: rock size, bed packing and variation among upland streams. Freshw Biol 40:625–639. https://doi.org/10.1046/j.1365-2427.1998.00360.x

    Article  Google Scholar 

  • Dugdale SJ, Carbonneau PE, Campbell D (2010) Aerial photosieving of exposed gravel bars for the rapid calibration of airborne grain size maps. Earth Surf Process Landf 35:627–639. https://doi.org/10.1002/esp.1936

    Article  Google Scholar 

  • Einstein HA, El-Samni E-SA (1949) Hydrodynamic forces on a rough wall. Rev Mod Phys 21:520–524. https://doi.org/10.1103/RevModPhys.21.520

    Article  Google Scholar 

  • Entwistle NS, Fuller IC (2009) Terrestrial laser scanning to derive the surface grain size facies character of gravel bars. In: G. L. Heritage & A. Large (Eds.), Laser Scanning Environ Sci: pp 102–114. Chichester: John Wiley & Sons.

  • Ergenzinger P, De Jong C (2003) Perspectives on bed load measurement. Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances: 283:113–125

  • Fenton J, Abbott J (1977) Initial movement of grains on a stream bed: the effect of relative protrusion. Proc R Soc Lond A, Math, Phys Eng Sci 352:523–537

    Article  Google Scholar 

  • Ferguson RI (1994) Critical discharge for entrainment of poorly sorted gravel. Earth Surf Process Landf 19:179–186

    Article  Google Scholar 

  • Flinders CA, Hart DD (2009) Effects of pulsed flows on nuisance periphyton growths in rivers: a mesocosm study. River Res Appl 25:1320–1330. https://doi.org/10.1002/rra.1244

    Article  Google Scholar 

  • Fovet O, Belaud G, Litrico X, Charpentier S, Bertrand C, Dollet P, Hugodot C (2012) A model for fixed algae management in open channels using flushing flows. River Res Appl 28:960–972. https://doi.org/10.1002/rra.1495

    Article  Google Scholar 

  • Francalanci S, Parker G, Solari L (2008) Effect of seepage-induced nonhydrostatic pressure distribution on bed-load transport and bed morphodynamics. J Hydraul Eng 134:378–389. https://doi.org/10.1061/(Asce)0733-9429(2008)134:4(378)

    Article  Google Scholar 

  • Francoeur S, Biggs BF (2006) Short-term effects of elevated velocity and sediment abrasion on benthic algal communities. In: Stevenson RJ, Pan Y, Kociolek JP, Kingston J (eds) Advances in Algal Biology: A Commemoration of the Work of Rex Lowe, vol 185. Developments in Hydrobiology. Springer Netherlands, Dordrecht, The Netherlands, pp 59–69. https://doi.org/10.1007/1-4020-5070-4_4

  • Fuller IC, Large ARG, Milan DJ (2003) Quantifying channel development and sediment transfer following chute cutoff in a wandering gravel-bed river. Geomorphology 54:307–323. https://doi.org/10.1016/S0169-555X(02)00374-4

    Article  Google Scholar 

  • Graf WL (2006) Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 79:336–360. https://doi.org/10.1016/j.geomorph.2006.06.022

    Article  Google Scholar 

  • Graham DJ, Reid I, Rice SP (2005a) Automated sizing of coarse-grained sediments: image-processing procedures. Math Geol 37:1–28. https://doi.org/10.1007/s11004-005-8745-x

    Article  Google Scholar 

  • Graham DJ, Rice SP, Reid I (2005b) A transferable method for the automated grain sizing of river gravels. Water Resour Res 41:W07020. https://doi.org/10.1029/2004WR003868

  • Gray JR, Laronne JB, Marr JD (2010) Bedload-surrogate monitoring technologies. US Department of the Interior, US Geological Survey, Virginia

  • Green JC (2003) The precision of sampling grain-size percentiles using the Wolman method. Earth Surf Process Landf 28:979–991. https://doi.org/10.1002/esp.513

    Article  Google Scholar 

  • Hamill D, Buscombe D, Wheaton JM (2018) Alluvial substrate mapping by automated texture segmentation of recreational-grade side scan sonar imagery. PLoS ONE 13:e0194373

    Article  Google Scholar 

  • Heritage GL, Milan DJ (2009) Terrestrial laser scanning of grain roughness in a gravel-bed river. Geomorphology 113:4–11. https://doi.org/10.1016/j.geomorph.2009.03.021

    Article  Google Scholar 

  • Hodge R, Sear D, Leyland J (2013) Spatial variations in surface sediment structure in riffle-pool sequences: a preliminary test of the Differential Sediment Entrainment Hypothesis (DSEH). Earth Surf Process Landf 38:449–465. https://doi.org/10.1002/esp.3290

    Article  Google Scholar 

  • Horner RR, Welch E (1981) Stream periphyton development in relation to current velocity and nutrients. Can J Fish Aquat Sci 38:449–457

    Article  Google Scholar 

  • Horner RR, Welch EB, Seeley MR, Jacoby JM (1990) Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshw Biol 24:215–232

    Article  Google Scholar 

  • Hoyle JT, Kilroy C, Hicks DM, Brown L (2017) The influence of sediment mobility and channel geomorphology on periphyton abundance. Freshw Biol 62:258–273. https://doi.org/10.1111/fwb.12865

    Article  Google Scholar 

  • Ibbeken H, Schleyer R (1986) Photo‐sieving: a method for grain‐size analysis of coarse‐grained, unconsolidated bedding surfaces. Earth Surf Process Landf 11:59–77. https://doi.org/10.1002/esp.3290110108

    Article  Google Scholar 

  • Jaeger M, Smart G (2012) Flow induced pressure fluctuations with a gravel bed. In: Murillo Muñoz R (ed) River Flow 2012. pp 435–441

  • James MR, Robson S, d’Oleire-Oltmanns S, Niethammer U (2017) Optimising UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment. Geomorphology 280:51–66. https://doi.org/10.1016/j.geomorph.2016.11.021

    Article  Google Scholar 

  • Jowett IG, Biggs BJ (1997) Flood and velocity effects on periphyton and silt accumulation in two New Zealand rivers. NZ J Mar Freshw Res 31:287–300

    Article  Google Scholar 

  • Kenyon NH, Belderson RH (1973) Bed forms of the Mediterranean undercurrent observed with side-scan sonar. Sediment Geol 9:77–99. https://doi.org/10.1016/0037-0738(73)90027-4

    Article  Google Scholar 

  • Komar PD (1987) Selective gravel entrainment and the empirical evaluation of flow competence. Sedimentology 34:1165–1176. https://doi.org/10.1111/j.1365-3091.1987.tb00599.x

    Article  Google Scholar 

  • Kondolf GM, Wilcock PR (1996) The flushing flow problem: defining and evaluating objectives. Water Resour Res 32:2589–2599. https://doi.org/10.1029/96wr00898

    Article  Google Scholar 

  • Kramer H (1935) Sand mixtures and sand movement in fluvial model. Trans Am Soc Civil Eng 100:798–838

    Google Scholar 

  • Lacey R, Roy AG (2007) A comparative study of the turbulent flow field with and without a pebble cluster in a gravel bed river. Water Resources Research 43:W05502, https://doi.org/10.1029/2006wr005027

  • Lague D, Brodu N, Leroux J (2013) Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (NZ). ISPRS J Photogramm Remote Sens 82:10–26

    Article  Google Scholar 

  • Leopold LB, Emmett WW (1976) Bedload measurements, East Fork River, Wyoming. Proc Natl Acad Sci 73:1000–1004

    Article  CAS  Google Scholar 

  • Leopold LB, Emmett WW (1997) Bedload and river hydraulics: inferences from the East Fork River. US Geological Survey, Wyoming

    Google Scholar 

  • Lessard J, Hicks DM, Snelder TH, Arscott DB, Larned ST, Booker D, Suren AM (2013) Dam design can impede adaptive management of environmental flows: a case study from the Opuha Dam, New Zealand. Environ Manag 51:459–473. https://doi.org/10.1007/s00267-012-9971-x

    Article  Google Scholar 

  • Lisle TE, Madej M (1992) Spatial variation in armouring in a channel with high sediment supply. In: Billi P, Hey R, Thorne C, Tacconi P (eds) Dynamics of Gravel-Bed Rivers pp 277–293

  • Litrico X, Belaud G, Fovet O Adaptive control of algae detachment in regulated canal networks (2011). In: 2011 International Conference on Networking, Sensing and Control (ICNSC), Delft, the Netherlands, 11-13 April 2011. pp 197-202. https://doi.org/10.1109/ICNSC.2011.5874878

  • Lorang MS, Hauer FR (2003) Flow competence and streambed stability: an evaluation of technique and application. J North Am Benthol Soc 22:475–491. https://doi.org/10.2307/1468347

    Article  Google Scholar 

  • Lorang MS, Tonolla D (2014) Combining active and passive hydroacoustic techniques during flood events for rapid spatial mapping of bedload transport patterns in gravel-bed rivers. Fundam Appl Limnol 184:231–246. https://doi.org/10.1127/1863-9135/2014/0552

    Article  Google Scholar 

  • Lozano D, Arranja C, Rijo M, Mateos L (2010) Simulation of automatic control of an irrigation canal. Agric Water Manag 97:91–100. https://doi.org/10.1016/j.agwat.2009.08.016

    Article  Google Scholar 

  • Lu Y, Chiew Y-M, Cheng N-S (2008) Review of seepage effects on turbulent open-channel flow and sediment entrainment. J Hydraul Res 46:476–488. https://doi.org/10.3826/jhr.2008.2942

    Article  Google Scholar 

  • Mao L, Carrillo R, Escauriaza C, Iroume A (2016) Flume and field-based calibration of surrogate sensors for monitoring bedload transport. Geomorphology 253:10–21. https://doi.org/10.1016/j.geomorph.2015.10.002

    Article  Google Scholar 

  • McAllister TG, Wood SA, Hawes I (2016) The rise of toxic benthic Phormidium proliferations: a review of their taxonomy, distribution, toxin content and factors regulating prevalence and increased severity. Harmful Algae 55:282–294. https://doi.org/10.1016/j.hal.2016.04.002

    Article  CAS  Google Scholar 

  • Measures R, Tait S (2008) Quantifying the role of bed surface topography in controlling sediment stability in water‐worked gravel deposits. Water Resour Res 44:1–17. https://doi.org/10.1029/2006wr005794

    Article  Google Scholar 

  • Milan D, Heritage G, Large A, Charlton M (2001) Stage dependent variability in tractive force distribution through a riffle–pool sequence. Catena 44:85–109. https://doi.org/10.1016/S0341-8162(00)00155-7

    Article  Google Scholar 

  • Milan DJ (2009) Terrestrial laser scan-derived topographic and roughness data for hydraulic modelling of gravel-bed rivers. Wiley-Blackwell, Oxford, UK

    Book  Google Scholar 

  • Milan DJ, Heritage GL (2012) LiDAR and ADCP Use in Gravel-Bed Rivers: Advances Since GBR6. In: Michael C, Biron PM, Roy AG (eds) Gravel-bed Rivers: Processes, Tools, Environments. Wiley, pp 286–302. https://doi.org/10.1002/9781119952497.ch22

    Chapter  Google Scholar 

  • Millane RP, Weir MI, Smart GM (2006) Automated analysis of imbrication and flow direction in alluvial sediments using laser-scan data. J Sediment Res 76:1049–1055. https://doi.org/10.2110/jsr.2006.098

    Article  Google Scholar 

  • Miller M, McCave I, Komar P (1977) Threshold of sediment motion under unidirectional currents. Sedimentology 24:507–527

    Article  Google Scholar 

  • Mizuyama T, Oda A, Laronne JB, Nonaka M, Matsuoka M (2010) Laboratory tests of a Japanese pipe geophone for continuous acoustic monitoring of coarse bedload. US Geol Surv Sci Investig Report 5091:319–335

    Google Scholar 

  • Mueller ER, Pitlick J, Nelson JM (2005) Variation in the reference shields stress for bed load transport in gravel-bed streams and rivers. Water Resour Res 41:W04006. https://doi.org/10.1029/2004WR003692

    Article  Google Scholar 

  • Neverman AJ, Fuller IC, Procter JN (2016) Application of geomorphic change detection (GCD) to quantify morphological budgeting error in a New Zealand gravel-bed river: a case study from the Makaroro River, Hawke’s Bay. J Hydrol 55:45–63

    Google Scholar 

  • Nikora V, Ballio F, Coleman S, Pokrajac D (2013) Spatially averaged flows over mobile rough beds: definitions, averaging theorems, and conservation equations. J Hydraul Eng 139:803–811

    Article  Google Scholar 

  • Nikora V, Goring D, McEwan I, Griffiths G (2001) Spatially averaged open-channel flow over rough bed. J Hydraul Eng 127:123–133

    Article  Google Scholar 

  • Paiement-Paradis G, Marquis G, Roy A (2011) Effects of turbulence on the transport of individual particles as bedload in a gravel-bed river. Earth Surf Process Landf 36:107–116. https://doi.org/10.1002/esp.2027

    Article  Google Scholar 

  • Papanicolaou A, Diplas P, Evaggelopoulos N, Fotopoulos S (2002) Stochastic incipient motion criterion for spheres under various bed packing conditions. J Hydraul Eng 128:369–380. doi:10.1061/(Asce)0733-9429(2002)128:4(369)

    Article  Google Scholar 

  • Papanicolaou A, Tsakiris AG, Strom KB (2012) The use of fractals to quantify the morphology of cluster microforms. Geomorphology 139:91–108. https://doi.org/10.1016/j.geomorph.2011.10.007

    Article  Google Scholar 

  • Parker G, Dhamotharan S, Stefan H (1982) Model experiments on mobile, paved gravel bed streams. Water Resour Res 18:1395–1408

    Article  Google Scholar 

  • Patel M, Majumder S, Kumar B (2017) Effect of seepage on flow and bedforms dynamics. Earth Surface Processes and Landforms. 42:1807–1819

    Article  Google Scholar 

  • Pearson E, Smith MW, Klaar MJ, Brown LE (2017) Can high resolution 3D topographic surveys provide reliable grain size estimates in gravel bed rivers? Geomorphology 293:143–155. https://doi.org/10.1016/j.geomorph.2017.05.015

    Article  Google Scholar 

  • Piedra MM, Haynes H, Hoey TB (2012) The spatial distribution of coarse surface grains and the stability of gravel river beds. Sedimentology 59:1014–1029. https://doi.org/10.1111/j.1365-3091.2011.01290.x

    Article  Google Scholar 

  • Poff NL et al. (1997) The natural flow regime. Bioscience 47:769–784. https://doi.org/10.2307/1313099

    Article  Google Scholar 

  • Poff NL et al. (2015) Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat Clim Change 6:25–34. https://doi.org/10.1038/NCLIMATE2765

    Article  Google Scholar 

  • Poff NL, Olden JD, Merritt DM, Pepin DM (2007) Homogenization of regional river dynamics by dams and global biodiversity implications. Proc Natl Acad Sci 104:5732–5737. https://doi.org/10.1073/pnas.0609812104

    Article  CAS  Google Scholar 

  • Poff NL, Zimmerman JKH (2010) Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw Biol 55:194–205. https://doi.org/10.1111/j.1365-2427.2009.02272.x

    Article  Google Scholar 

  • Pokrajac D, McEwan I, Nikora V (2008) Spatially averaged turbulent stress and its partitioning. Exp Fluids 45:73–83. https://doi.org/10.1007/s00348-008-0463-y

    Article  Google Scholar 

  • Powell DM (1998) Patterns and processes of sediment sorting in gravel-bed rivers. Progress Phys Geogr 22:1–32

    Article  Google Scholar 

  • Radice A, Nikora V, Campagnol J, Ballio F (2013) Active interactions between turbulence and bed load: conceptual picture and experimental evidence. Water Resour Res 49:90–99. https://doi.org/10.1029/2012WR012255

    Article  Google Scholar 

  • Reid I, Brayshaw AC, Frostick LE (1984) An electromagnetic device for automatic detection of bedload motion and its field applications. Sedimentology 31:269–276. https://doi.org/10.1111/j.1365-3091.1984.tb01963.x

    Article  Google Scholar 

  • Reid I, Frostick LE (1986) Dynamics of bedload transport in Turkey Brook, a coarse‐grained alluvial channel. Earth Surf Process Landf 11:143–155

    Article  Google Scholar 

  • Reid I, Layman J, Frostick L (1980) The continuous measurement of bedload discharge. J Hydraul Res 18:243–249

    Article  Google Scholar 

  • Rennie CD, Villard PV (2004) Site specificity of bed load measurement using an acoustic Doppler current profiler. J Geophys Res: Earth Surface 109:F03003, https://doi.org/10.1029/2003JF000106

  • Rickenmann D, Turowski JM, Fritschi B, Klaiber A, Ludwig A (2012) Bedload transport measurements at the Erlenbach stream with geophones and automated basket samplers. Earth Surf Process Landf 37:1000–1011. https://doi.org/10.1002/esp.3225

    Article  Google Scholar 

  • Rickenmann D et al. (2014) Bedload transport measurements with impact plate geophones: comparison of sensor calibration in different gravel-bed streams. Earth Surf Process Landf 39:928–942. https://doi.org/10.1002/esp.3499

    Article  Google Scholar 

  • Ryder DS, Watts RJ, Nye E, Burns A (2006) Can flow velocity regulate epixylic biofilm structure in a regulated floodplain river? Mar Freshw Res 57:29–36

    Article  Google Scholar 

  • Sear DA (1992) Impact of hydroelectric power releases on sediment transport processes in pool-riffle sequences. In: Billi P, Hey RD, Thorne CR, Tacconi P (eds) Dynamics of Gravel-Bed Rivers.. John, New York, pp 629–650

    Google Scholar 

  • Sear DA (1995) Morphological and sedimentological changes in a gravel‐bed river following 12 years of flow regulation for hydropower. Regul River: Res Manag 10:247–264. https://doi.org/10.1002/rrr.3450100219

    Article  Google Scholar 

  • Shields A (1936) Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilungen der Preussischen Versuchsanstalt fur Wasserbau Schiffbau, Berlin (English translation by W. P. Ott & J. C. van Uchelen, Hydrodynamics Laboratory publication no. 167. Soil Conservation Service. California Institute of Technology, Pasadena California, pp. 36).

  • Shrestha SM, Shibata K, Hirano K, Takahara T, Matsumura K (2005) River Bedload Monitoring Using a Radar System. Paper presented at the International Bedload Surrogates Monitoring Workshop,

  • Smart G, Plew D, Gateuille D Eddy educed entrainment. In: Dittrich K, Aberle & Geisenhainer (ed) River Flow 2010, 2010. Bundesanstalt für Wasserbau, pp 747–754

  • Smart GM, Habersack HM (2007) Pressure fluctuations and gravel entrainment in rivers. J Hydraul Res 45:661–673

    Article  Google Scholar 

  • Smith H, Yager E (1202) An investigation into the turbulence parameter responsible for the onset of grain motion. Abstract EP23B-0817 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec. Vollmer 2007. 43, W05410, https://doi.org/10.1029/2006WR004919

  • Snelder TH, Booker DJ, Quinn JM, Kilroy C (2014) Predicting periphyton cover frequency distributions across New Zealand’s Rivers. JAWRA. J Am Water Resour Assoc 50:111–127. https://doi.org/10.1111/jawr.12120

    Article  Google Scholar 

  • Spicer KR,Costa JE,Placzek G,(1997) Measuring flood discharge in unstable stream channels using ground-penetrating radar Geology 25:423–426https://doi.org/10.1130/0091-7613(1997)0252.3.Co;2

    Article  Google Scholar 

  • Stark N, Hay AE, Cheel R, Zedel L, Barclay D (2014) Laboratory measurements of coarse sediment bedload transport velocity using a prototype wideband coherent Doppler profiler (MFDop). J Atmos Ocean Technol 31:999–1011. https://doi.org/10.1175/Jtech-D-13-00095.1

    Article  Google Scholar 

  • Tamminga A, Hugenholtz C, Eaton B, Lapointe M (2015) Hyperspatial remote sensing of channel reach morphology and hydraulic fish habitat using an unmanned aerial vehicle (UAV): a first assessment in the context of river research and management. River Res Appl 31:379–391. https://doi.org/10.1002/rra.2743

    Article  Google Scholar 

  • Tennekes H, Lumley JL (1972) A first course in turbulence. MIT press:Massachusett

  • Townsend SA, Padovan AV (2005) The seasonal accrual and loss of benthic algae (Spirogyra) in the Daly River, an oligotrophic river in tropical Australia. Mar Freshw Res 56:317–327

    Article  CAS  Google Scholar 

  • Traykovski P, Irish JD, Lynch JF (1998) Motivations for using a pulsed full spectrum Doppler to measure bedload and near‐bottom suspended sediment transport. J Acoust Soc Am 103:2866–2866

    Article  Google Scholar 

  • Tsakiris AG, Papanicolaou AN, Lauth TJ (2014) Signature of bedload particle transport mode in the acoustic signal of a geophone. J Hydraul Res 52:185–204. https://doi.org/10.1080/00221686.2013.876454

    Article  Google Scholar 

  • Tsujimoto T, Tashiro T (2004) Application of population dynamics modeling to habitat evaluation–growth of some species of attached algae and its detachment by transported sediment–. Hydroécologie Appliquée 14:161–174

    Article  Google Scholar 

  • Tunnicliffe J,Gottesfeld AS,Mohamed M,(2000) High resolution measurement of bedload transport Hydrol Process 14:2631–2643https://doi.org/10.1002/1099-1085(20001030)14:153.0.Co;2-C

    Article  Google Scholar 

  • Vázquez-Tarrío D, Borgniet L, Liébault F, Recking A (2017) Using UAS optical imagery and SfM photogrammetry to characterize the surface grain size of gravel bars in a braided river (Vénéon River, French Alps). Geomorphology 285:94–105. https://doi.org/10.1016/j.geomorph.2017.01.039

    Article  Google Scholar 

  • Verdú JM, Batalla RJ, Martínez-Casasnovas JA (2005) High-resolution grain-size characterisation of gravel bars using imagery analysis and geo-statistics. Geomorphology 72:73–93. https://doi.org/10.1016/j.geomorph.2005.04.015

    Article  Google Scholar 

  • Vollmer S, Kleinhans MG (2007) Predicting incipient motion, including the effect of turbulent pressure fluctuations in the bed. Water Resour Res 43:https://doi.org/10.1029/2006WR004919

  • Wang H-w, Hong J-H, Huang C-J (2016) Analysis of ground-penetrating radar signal reflected from the water volume influenced by sediment concentration. In: Huang C-J (ed) River Flow 2016: Iowa City, USA, July 11–14, 345, 2016.

  • Watts RJ, Ryder DS, Burns A, Wilson AL, Nye E, Zander A, Dehaan R (2006) Responses of biofilms to cyclic releases during a low flow period in the Mitta Mitta River, Victoria, Australia. Institute for Land Water and Society - Charles Sturt University,

  • Westoby MJ, Dunning SA, Woodward J, Hein AS, Marrero SM, Winter K, Sugden DE (2015) Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry. J Glaciol 61:1088–1102. https://doi.org/10.3189/2015JoG15J086

    Article  Google Scholar 

  • Wilcock PR, Barta AF, Shea CC, Kondolf GM, Matthews WVG, Pitlick J (1996) Observations of flow and sediment entrainment on a large Gravel-Bed River. Water Resour Res 32:2897–2909. https://doi.org/10.1029/96WR01628

    Article  Google Scholar 

  • Williams RD, Brasington J, Hicks M, Measures R, Rennie CD, Vericat D (2013) Hydraulic validation of two-dimensional simulations of braided river flow with spatially continuous aDcp data. Water Resour Res 49:5183–5205. https://doi.org/10.1002/wrcr.20391

    Article  Google Scholar 

  • Williams RD, Brasington J, Vericat D, Hicks DM (2014) Hyperscale terrain modelling of braided rivers: fusing mobile terrestrial laser scanning and optical bathymetric mapping. Earth Surf Process Landf 39:167–183. https://doi.org/10.1002/esp.3437

    Article  Google Scholar 

  • Wittenberg L, Newson MD (2005) Particle clusters in gravel‐bed rivers: an experimental morphological approach to bed material transport and stability concepts. Earth Surf Process Landf 30:1351–1368. https://doi.org/10.1002/esp.1184

    Article  Google Scholar 

  • Wolman MG (1954) A Method of Sampling Coarse River-Bed Material. Transactions, American Geophysical Union 35:951–956

  • Wood SA et al. (2007) First report of homoanatoxin-a and associated dog neurotoxicosis in New Zealand. Toxicon 50:292–301. https://doi.org/10.1016/j.toxicon.2007.03.025

    Article  CAS  Google Scholar 

  • Woodget AS, Austrums R (2017) Subaerial gravel size measurement using topographic data derived from a UAV-SfM approach. Earth Surf Process Landf 42:1434–1443. https://doi.org/10.1002/esp.4139

    Article  Google Scholar 

  • Woodget AS, Carbonneau PE, Visser F, Maddock IP (2015) Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surf Process Landf 40:47–64. https://doi.org/10.1002/esp.3613

    Article  Google Scholar 

  • Woodget AS, Fyffe C, Carbonneau PE (2018) From manned to unmanned aircraft: adapting airborne particle size mapping methodologies to the characteristics of sUAS and SfM. Earth Surf Process Landf 43:857–870. https://doi.org/10.1002/esp.4285

    Article  Google Scholar 

  • World Commission on Dams (2000) Dams and Development: A New Framework for Decision-making: the Report of the World Commission on Dams. Earthscan Publications Ltd,

  • Wu F-C, Chou Y-J (2003) Rolling and lifting probabilities for sediment entrainment. J Hydraul Eng 129:110–119. doi:10.1061/(Asce)0733-9429(2003)129:2(110)

    Article  Google Scholar 

  • Yager EM, Kenworthy M, Monsalve A (2015) Taking the river inside: fundamental advances from laboratory experiments in measuring and understanding bedload transport processes. Geomorphology 244:21–32. https://doi.org/10.1016/j.geomorph.2015.04.002

    Article  Google Scholar 

  • Yu GA, Wang ZY, Huang HQ, Liu HX, Blue B, Zhang K (2012) Bed load transport under different streambed conditions - a field experimental study in a mountain stream. Int J Sediment Res 27:426–438. https://doi.org/10.1016/S1001-6279(13)60002-5

    Article  Google Scholar 

  • Zanke U (2003) On the influence of turbulence on the initiation of sediment motion. Int J Sediment Res 18:17–31

    Google Scholar 

  • Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K (2015) A global boom in hydropower dam construction. Aquat Sci 77:161–170. https://doi.org/10.1007/s00027-014-0377-0

    Article  Google Scholar 

  • Zhu T, Fu D, Jenkinson B, Jafvert CT (2015) Calibration and application of an automated seepage meter for monitoring water flow across the sediment-water interface. Environ Monit Assess 187:1–11. https://doi.org/10.1007/s10661-015-4388-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank anonymous referees for their constructive comments on previous versions of this manuscript, which have been helpful in focusing this paper. Andrew Neverman is in receipt of a Massey University Doctoral Scholarship, and thanks Manaaki Whenua for supporting this work from Strategic Science Investment Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Neverman.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neverman, A.J., Death, R.G., Fuller, I.C. et al. Towards Mechanistic Hydrological Limits: A Literature Synthesis to Improve the Study of Direct Linkages between Sediment Transport and Periphyton Accrual in Gravel-Bed Rivers. Environmental Management 62, 740–755 (2018). https://doi.org/10.1007/s00267-018-1070-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-018-1070-1

Keywords

Navigation