Skip to main content

Advertisement

Log in

Association of IL-36γ with tertiary lymphoid structures and inflammatory immune infiltrates in human colorectal cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

IL-1 family cytokines play a dual role in the gut, with different family members contributing either protective or pathogenic effects. IL-36γ is an IL-1 family cytokine involved in polarizing type-1 immune responses. However, its function in the gut, including in colorectal cancer pathogenesis, is not well appreciated. In a murine model of colon carcinoma, IL-36γ controls tertiary lymphoid structure formation and promotes a type-1 immune response concurrently with a decrease in expression of immune checkpoint molecules in the tumor microenvironment. Here, we demonstrate that IL-36γ plays a similar role in driving a pro-inflammatory phenotype in human colorectal cancer. We analyzed a cohort of 33 primary colorectal carcinoma tumors using imaging, flow cytometry, and transcriptomics to determine the pattern and role of IL-36γ expression in this disease. In the colorectal tumor microenvironment, we observed IL-36γ to be predominantly expressed by M1 macrophages and cells of the vasculature, including smooth muscle cells and high endothelial venules. This pattern of IL-36γ expression is associated with a CD4+ central memory T cell infiltrate and an increased density of B cells in tertiary lymphoid structures, as well as with markers of fibrosis. Conversely, expression of the antagonist to IL-36 signaling, IL-1F5, was associated with intratumoral expression of checkpoint molecules, including PD-1, PD-L1, and CTLA4, which can suppress the immune response. These data support a role for IL-36γ in the physiologic immune response to colorectal cancer by sustaining inflammation within the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EMRA:

Effector memory T cells that express CD45RA

HEV:

High endothelial venule

IHC:

Immunohistochemistry

IM:

Invasive margin

MSI:

Microsatellite instable

PNAd:

Peripheral node addressin

SMA:

Alpha-smooth muscle actin

SMC:

Smooth muscle cells

TC:

Tumor core

TCM:

Central memory T cells

TLS:

Tertiary lymphoid structures

VEC:

Vascular endothelial cells

References

  1. Jorgensen ML, Young JM, Solomon MJ (2015) Optimal delivery of colorectal cancer follow-up care: improving patient outcomes. Patient Relat Outcome Meas 6:127–138. https://doi.org/10.2147/PROM.S49589

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Fedewa SA et al (2017) Colorectal cancer statistics, 2017. CA Cancer J Clin 67:177–193. https://doi.org/10.3322/caac.21395

    Article  PubMed  Google Scholar 

  3. Ribassin-Majed L, Le Teuff G, Hill C (2017) La fréquence des cancers en 2016 et leur évolution. Bull Cancer 104:20–29

    Article  PubMed  Google Scholar 

  4. Iqbal A, George TJ (2017) Randomized clinical trials in colon and rectal cancer. Surg Oncol Clin N Am 26:689–704. https://doi.org/10.1016/j.soc.2017.05.008

    Article  PubMed  Google Scholar 

  5. Weinstein AM, Chen L, Brzana EA et al (2017) Tbet and IL-36γ cooperate in therapeutic DC-mediated promotion of ectopic lymphoid organogenesis in the tumor microenvironment. Oncoimmunology. https://doi.org/10.1080/2162402X.2017.1322238

    Article  PubMed  PubMed Central  Google Scholar 

  6. Busfield SJ, Comrack CA, Yu G et al (2000) Identification and gene organization of three novel members of the IL-1 family on human chromosome 2. Genomics 66:213–216. https://doi.org/10.1006/geno.2000.6184

    Article  CAS  PubMed  Google Scholar 

  7. Debets R, Timans JC, Homey B et al (2001) Two novel IL-1 family members, IL-1 and IL-1, function as an antagonist and agonist of NF-B activation through the orphan IL-1 receptor-related protein 2. J Immunol 167:1440–1446. https://doi.org/10.4049/jimmunol.167.3.1440

    Article  CAS  PubMed  Google Scholar 

  8. Towne JE, Garka KE, Renshaw BR et al (2004) Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kappaB and MAPKs. J Biol Chem 279:13677–13688. https://doi.org/10.1074/jbc.M400117200

    Article  CAS  PubMed  Google Scholar 

  9. Mutamba S, Allison A, Mahida Y et al (2012) Expression of IL-1Rrp2 by human myelomonocytic cells is unique to DCs and facilitates DC maturation by IL-1F8 and IL-1F9. Eur J Immunol 42:607–617. https://doi.org/10.1002/eji.201142035

    Article  CAS  PubMed  Google Scholar 

  10. Vigne S, Palmer G, Lamacchia C et al (2011) IL-36R ligands are potent regulators of dendritic and T cells. Blood 118:5813–5823. https://doi.org/10.1182/blood-2011-05-356873

    Article  CAS  PubMed  Google Scholar 

  11. Bridgewood C, Stacey M, Alase A et al (2017) IL-36γ has proinflammatory effects on human endothelial cells. Exp Dermatol 26:402–408. https://doi.org/10.1111/exd.13228

    Article  CAS  PubMed  Google Scholar 

  12. Penha R, Higgins J, Mutamba S et al (2016) IL-36 receptor is expressed by human blood and intestinal T lymphocytes and is dose-dependently activated via IL-36β and induces CD4+ lymphocyte proliferation. Cytokine 85:18–25

    Article  CAS  PubMed  Google Scholar 

  13. Bachmann M, Scheiermann P, Härdle L et al (2012) IL-36γ/IL-1F9, an innate T-bet target in myeloid cells. J Biol Chem 287:41684–41696. https://doi.org/10.1074/jbc.M112.385443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vigne S, Palmer G, Martin P et al (2012) IL-36 signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4+ T cells. Blood 120:3478–3487. https://doi.org/10.1182/blood-2012-06-439026

    Article  CAS  PubMed  Google Scholar 

  15. Guinney J, Dienstmann R, Wang X et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350–1356. https://doi.org/10.1038/nm.3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Remark R, Alifano M, Cremer I et al (2013) Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin Cancer Res 19:4079–4091. https://doi.org/10.1158/1078-0432.CCR-12-3847

    Article  CAS  PubMed  Google Scholar 

  17. Di Caro G, Bergomas F, Grizzi F et al (2014) Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin Cancer Res 20:2147–2158. https://doi.org/10.1158/1078-0432.CCR-13-2590

    Article  CAS  PubMed  Google Scholar 

  18. Dieu-Nosjean M-C, Giraldo NA, Kaplon H et al (2016) Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev 271:260–275. https://doi.org/10.1111/imr.12405

    Article  CAS  PubMed  Google Scholar 

  19. Gatto D, Brink R (2010) The germinal center reaction. J Allergy Clin Immunol 126:898–907. https://doi.org/10.1016/j.jaci.2010.09.007 (quiz 908–9)

    Article  CAS  PubMed  Google Scholar 

  20. Dieu-Nosjean M-C, Antoine M, Danel C et al (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26:4410–4417. https://doi.org/10.1200/JCO.2007.15.0284

    Article  CAS  PubMed  Google Scholar 

  21. Bergomas F, Grizzi F, Doni A et al (2011) Tertiary intratumor lymphoid tissue in colo-rectal cancer. Cancers (Basel) 4:1–10. https://doi.org/10.3390/cancers4010001

    Article  Google Scholar 

  22. Coppola D, Nebozhyn M, Khalil F et al (2011) Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am J Pathol 179:37–45. https://doi.org/10.1016/j.ajpath.2011.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marisa L, de Reyniès A, Duval A et al (2013) Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med 10:e1001453. https://doi.org/10.1371/journal.pmed.1001453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McCall MN, Bolstad BM, Irizarry RA (2010) Frozen robust multiarray analysis (fRMA). Biostatistics 11:242–253. https://doi.org/10.1093/biostatistics/kxp059

    Article  PubMed  PubMed Central  Google Scholar 

  25. Becht E, Giraldo NA, Lacroix L et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17:218. https://doi.org/10.1186/s13059-016-1070-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giraldo NA, Becht E, Vano Y et al (2017) Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin Cancer Res 23:4416–4428. https://doi.org/10.1158/1078-0432.CCR-16-2848

    Article  CAS  PubMed  Google Scholar 

  27. Roederer M, Nozzi JL, Nason MC (2011) SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A 79:167–174. https://doi.org/10.1002/cyto.a.21015

    Article  PubMed  PubMed Central  Google Scholar 

  28. Becht E, de Reyniès A, Giraldo NA et al (2016) Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin Cancer Res 22:4057–4066. https://doi.org/10.1158/1078-0432.CCR-15-2879

    Article  CAS  PubMed  Google Scholar 

  29. Ohashi T, Aoki M, Tomita H et al (2017) M2-like macrophage polarization in high lactic acid-producing head and neck cancer. Cancer Sci 108:1128–1134. https://doi.org/10.1111/cas.13244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Chaisemartin L, Goc J, Damotte D et al (2011) Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res 71:6391–6399. https://doi.org/10.1158/0008-5472.CAN-11-0952

    Article  CAS  PubMed  Google Scholar 

  31. Martinet L, Garrido I, Filleron T et al (2011) Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res 71:5678–5687. https://doi.org/10.1158/0008-5472.CAN-11-0431

    Article  CAS  PubMed  Google Scholar 

  32. Meshcheryakova A, Tamandl D, Bajna E et al (2014) B cells and ectopic follicular structures: novel players in anti-tumor programming with prognostic power for patients with metastatic colorectal cancer. PLoS One 9:e99008. https://doi.org/10.1371/journal.pone.0099008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Germain C, Gnjatic S, Tamzalit F et al (2014) Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med 189:832–844. https://doi.org/10.1164/rccm.201309-1611OC

    Article  CAS  PubMed  Google Scholar 

  34. Ha SY, Yeo S-Y, Xuan Y, Kim S-H (2014) The prognostic significance of cancer-associated fibroblasts in esophageal squamous cell carcinoma. PLoS One 9:e99955. https://doi.org/10.1371/journal.pone.0099955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guedj K, Khallou-Laschet J, Clement M et al (2014) M1 macrophages act as LTβR-independent lymphoid tissue inducer cells during atherosclerosis-related lymphoid neogenesis. Cardiovasc Res 101:434–443. https://doi.org/10.1093/cvr/cvt263

    Article  CAS  PubMed  Google Scholar 

  36. Scheibe K, Backert I, Wirtz S et al (2016) IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo. Gut 66:823–838. https://doi.org/10.1136/gutjnl-2015-310374

    Article  CAS  PubMed  Google Scholar 

  37. Kanda T, Nishida A, Takahashi K et al (2015) Interleukin(IL)-36α and IL-36γ induce proinflammatory mediators from human colonic subepithelial myofibroblasts. Front Med 2:69. https://doi.org/10.3389/fmed.2015.00069

    Article  Google Scholar 

  38. Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–462. https://doi.org/10.1016/j.immuni.2016.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dvorak HF (2015) Tumors: wounds that do not heal-redux. Cancer Immunol Res 3:1–11. https://doi.org/10.1158/2326-6066.CIR-14-0209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rybinski B, Franco-Barraza J, Cukierman E (2014) The wound healing, chronic fibrosis, and cancer progression triad. Physiol Genom 46:223–244. https://doi.org/10.1152/physiolgenomics.00158.2013

    Article  CAS  Google Scholar 

  41. Cirri P, Chiarugi P (2011) Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 1:482–497

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Takahashi K, Nishida A, Shioya M et al (2015) Interleukin (IL)-1β Is a strong inducer of IL-36γ expression in human colonic myofibroblasts. 10:e0138423. https://doi.org/10.1371/journal.pone.0138423

  43. Kendall RT, Feghali-Bostwick CA (2014) Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 5:123. https://doi.org/10.3389/fphar.2014.00123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yeung TM, Buskens C, Wang LM et al (2013) Myofibroblast activation in colorectal cancer lymph node metastases. Br J Cancer 108:2106–2115. https://doi.org/10.1038/bjc.2013.209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Z-S, Cong Z-J, Luo Y et al (2014) Decreased expression of interleukin-36α predicts poor prognosis in colorectal cancer patients. Int J Clin Exp Pathol 7:8077–8081

    PubMed  PubMed Central  Google Scholar 

  46. Barksby HE, Nile CJ, Jaedicke KM et al (2009) Differential expression of immunoregulatory genes in monocytes in response to Porphyromonas gingivalis and Escherichia coli lipopolysaccharide. Clin Exp Immunol 156:479–487. https://doi.org/10.1111/j.1365-2249.2009.03920.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dietrich D, Martin P, Flacher V et al (2016) Interleukin-36 potently stimulates human M2 macrophages, Langerhans cells and keratinocytes to produce pro-inflammatory cytokines. Cytokine 84:88–98. https://doi.org/10.1016/J.CYTO.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  48. Foster AM, Baliwag J, Chen CS et al (2014) IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J Immunol 192:6053–6061. https://doi.org/10.4049/jimmunol.1301481

    Article  CAS  PubMed  Google Scholar 

  49. Smith JJ, Deane NG, Wu F et al (2010) Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology 138:958–968. https://doi.org/10.1053/j.gastro.2009.11.005

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Institut National de la Santé et de la Recherche Médicale, the University Paris-Descartes, the University Pierre et Marie Curie, Labex Immuno-Oncology (LAXE62_9UMRS972 FRIDMAN) and Cancer Research for Personalized Medecine programmes (CARPEM T8), and grants from Institut du Cancer (INCa) HTE Plan Cancer (C1608DS) and NIH RO1s CA169118 and CA204419. Aliyah M. Weinstein was supported by a Chateaubriand Fellowship of the Office for Science and Technology of the Embassy of France in the United States and Florent Petitprez by CARPEM doctorate fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AMW, NAG, WHF, and CS-F designed experiments. AMW, NAG, LL, and LM performed experiments. AMW, NAG, FP, WHF, and CS-F analyzed data. AMW, NAG, WHF, WJS, and CS-F wrote the manuscript. FP, CJ and J-FE designed clinical protocol and acquired clinical samples. All authors approved the final version of this manuscript.

Corresponding author

Correspondence to Aliyah M. Weinstein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and ethical standards

The research project “Reincolon” was approved by the Institutional Review Board of Hôpitaux Universitaires Paris-Ile de France Ouest-Ambroise Paré (IO-ACA-CRB-FM002). The study was conducted according to the recommendations in the Helsinki Declaration.

Informed consent

All the included patients signed an informed consent form prior to inclusion in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 10745 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinstein, A.M., Giraldo, N.A., Petitprez, F. et al. Association of IL-36γ with tertiary lymphoid structures and inflammatory immune infiltrates in human colorectal cancer. Cancer Immunol Immunother 68, 109–120 (2019). https://doi.org/10.1007/s00262-018-2259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2259-0

Keywords

Navigation