Skip to main content

Advertisement

Log in

Using natural products to promote caspase-8-dependent cancer cell death

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The selective killing of cancer cells without toxicity to normal nontransformed cells is an idealized goal of cancer therapy. Thus, there has been much interest in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a protein that appears to selectively kill cancer cells. TRAIL has been reported to trigger apoptosis and under some circumstances, an alternate death signaling pathway termed necroptosis. The relative importance of necroptosis for cell death induction in vivo is under intensive investigation. Nonetheless, many cancer cells (particularly those freshly isolated from cancer patients) are highly resistant to TRAIL-mediated cell death. Therefore, there is an underlying interest in identifying agents that can be combined with TRAIL to improve its efficacy. There are numerous reports in which combination of TRAIL with standard antineoplastic drugs has resulted in enhanced cancer cell death in vitro. However, many of these chemotherapeutic drugs are nonspecific and associated with adverse effects, which raise serious concerns for cancer therapy in patients. By contrast, natural products have been shown to be safer and efficacious alternatives. Recently, a number of studies have suggested that certain natural products when combined with TRAIL can enhance cancer cell death. In this review, we highlight molecular pathways that might be targeted by various natural products to promote cell death, and focus on our recent work with withanolides as TRAIL sensitizers. Finally, we will suggest synergistic approaches for combining active withanolides with various forms of immunotherapy to promote cancer cell death and an effective antitumor immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APCs:

Antigen-presenting cells

Bak:

Bcl-2 homologous antagonist killer

Bax:

Bcl-2-associated X protein

Bid:

BH3-interacting domain death agonist

c-FLIP:

Cellular FLICE inhibitory protein

DAMPs:

Danger-associated molecular patterns

DD:

Death domain

DED:

Death effector domains

DISC:

Death-inducing signaling complex

DRs:

Death receptors

dsRNA:

Double-stranded RNA

FADD:

Fas-associated protein with death domain

Fas L:

Fas ligand

IAP:

Inhibitor of apoptosis,

MAPK:

Mitogen-activated protein kinase

MLKL:

Mixed lineage kinase domain-like

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NLRs:

NOD-like receptors

OPG:

Osteoprotegerin

PCD:

Programmed cell death

PI3K/AKT:

Phosphoinositide 3-kinase/protein kinase B

poly(I:C):

Polyinosinic–polycytidylic acid

PRR:

Pattern recognition receptor

RHIM RIP:

Homotypic interaction motif

RIG1:

Retinoic acid-inducible gene I like receptors

RIP1:

Receptor-interacting protein 1

SAR:

Structure–activity relationship

Smac:

Second mitochondria-derived activator of caspase

TIR:

Toll/interleukin-1 receptor

TLRs:

Toll-like receptors

TNF:

Tumor necrosis factor

TNFR :

Tumor necrosis factor receptor

TRADD:

TNFR-associated death domain

TRAF2:

Tumor necrosis factor receptor-associated protein

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

TRIF:

TIR-domain-containing adapter-inducing interferon-β

References

  1. Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B (1995) The biochemistry of programmed cell-death. Faseb J 9(13):1277–1287

    CAS  PubMed  Google Scholar 

  2. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. doi:10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kanduc D, Mittelman A, Serpico R, Sinigaglia E, Sinha AA, Natale C, Santacroce R, Di Corcia MG, Lucchese A, Dini L, Pani P, Santacroce S, Simone S, Bucci R, Farber E (2002) Cell death: apoptosis versus necrosis (review). Int J Oncol 21(1):165–170

    CAS  PubMed  Google Scholar 

  4. Martin SJ, Henry CM (2013) Distinguishing between apoptosis, necrosis, necroptosis and other cell death modalities. Methods 61(2):87–89. doi:10.1016/j.ymeth.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  5. Feoktistova M, Leverkus M (2015) Programmed necrosis and necroptosis signaling. FEBS J 282(1):19–31. doi:10.1111/febs.13120

    Article  CAS  PubMed  Google Scholar 

  6. Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22(53):8628–8633

    Article  CAS  PubMed  Google Scholar 

  7. Amarante-Mendes GP, Griffith TS (2015) Therapeutic applications of TRAIL receptor agonists in cancer and beyond. Pharmacol Ther 155:117–131. doi:10.1016/j.pharmthera.2015.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gonzalvez F, Ashkenazi A (2010) New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29(34):4752–4765. doi:10.1038/onc.2010.221

    Article  CAS  PubMed  Google Scholar 

  9. Dimberg LY, Anderson CK, Camidge R, Behbakht K, Thorburn A, Ford HL (2013) On the TRAIL to successful cancer therapy. Predicting and counteracting resistance against TRAIL based therapeutics. Oncogene 32(11):1341–1350. doi:10.1038/onc.2012.164

    Article  CAS  PubMed  Google Scholar 

  10. Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A (2009) TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev 35(3):280–288. doi:10.1016/j.ctrv.2008.11.006

    Article  CAS  PubMed  Google Scholar 

  11. Yagita H, Takeda K, Hayakawa Y, Smyth MJ, Okumura K (2004) TRAIL and its receptors as targets for cancer therapy. Cancer Sci 95(10):777–783. doi:10.1111/j.1349-7006.2004.tb02181.x

    Article  CAS  PubMed  Google Scholar 

  12. Pennarun B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F, de Jong S (1805) Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta 2:123–140. doi:10.1016/j.bbcan.2009.11.004

    Google Scholar 

  13. Ozoren N, El-Deiry WS (2002) Defining characteristics of types I and II apoptotic cells in response to TRAIL. Neoplasia 4(6):551–557. doi:10.1038/sj.neo.7900270

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jost PJ, Grabow S, Gray D, McKenzie MD, Nachbur U, Huang DC, Bouillet P, Thomas HE, Borner C, Silke J, Strasser A, Kaufmann T (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460(7258):1035–1039. doi:10.1038/nature08229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ashkenazi A, Herbst RS (2008) To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 118(6):1979–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fulda S (2014) Tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Adv Exp Med Biol 818:167–180. doi:10.1007/978-1-4471-6458-6_8

    Article  CAS  PubMed  Google Scholar 

  17. Azijli K, Weyhenmeyer B, Peters GJ, de Jong S, Kruyt FA (2013) Non-canonical kinase signaling by the death ligand TRAIL in cancer cells: discord in the death receptor family. Cell Death Differ 20(7):858–868. doi:10.1038/cdd.2013.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He WY, Wang Q, Xu J, Xu XL, Padilla MT, Ren GS, Gou X, Lin Y (2012) Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2-and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy 8(12):1811–1821. doi:10.4161/auto.22145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sayers TJ (2011) Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol Immunother 60(8):1173–1180. doi:10.1007/s00262-011-1008-4

    Article  CAS  PubMed  Google Scholar 

  20. Menke C, Bin L, Thorburn J, Behbakht K, Ford HL, Thorburn A (2011) Distinct TRAIL resistance mechanisms can be overcome by proteasome inhibition but not generally by synergizing agents. Cancer Res 71(5):1883–1892. doi:10.1158/0008-5472.CAN-10-2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amm HM, Oliver PG, Lee CH, Li Y, Buchsbaum DJ (2011) Combined modality therapy with TRAIL or agonistic death receptor antibodies. Cancer Biol Ther 11(5):431–449. doi:10.4161/cbt.11.5.14671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Wilt LHAM, Kroon J, Jansen G, de Jong S, Peters GJ, Kruyt FAE (2013) Bortezomib and TRAIL: a perfect match for apoptotic elimination of tumour cells? Crit Rev Oncol Hematol 85(3):363–372. doi:10.1016/j.critrevonc.2012.08.001

    Article  PubMed  Google Scholar 

  23. Dai X, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G (2015) Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp Biol Med (Maywood) 240(6):760–773. doi:10.1177/1535370215579167

    Article  CAS  Google Scholar 

  24. Prasad S, Kim JH, Gupta SC, Aggarwal BB (2014) Targeting death receptors for TRAIL by agents designed by Mother Nature. Trends Pharmacol Sci 35(10):520–536. doi:10.1016/j.tips.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  25. Fulda S (2010) Modulation of apoptosis by natural products for cancer therapy. Planta Med 76(11):1075–1079. doi:10.1055/s-0030-1249961

    Article  CAS  PubMed  Google Scholar 

  26. Booth NL, Sayers TJ, Brooks AD, Thomas CL, Jacobsen K, Goncharova EI, McMahon JB, Henrich CJ (2009) A cell-based high-throughput screen to identify synergistic TRAIL sensitizers. Cancer Immunol Immunother 58(8):1229–1244. doi:10.1007/s00262-008-0637-8

    Article  PubMed  Google Scholar 

  27. Lee TJ, Um HJ, Min DS, Park JW, Choi KS, Kwon TK (2009) Withaferin A sensitizes TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP. Free Radic Biol Med 46(12):1639–1649. doi:10.1016/j.freeradbiomed.2009.03.022

    Article  CAS  PubMed  Google Scholar 

  28. Henrich CJ, Brooks AD, Erickson KL, Thomas CL, Bokesch HR, Tewary P, Thompson CR, Pompei RJ, Gustafson KR, McMahon JB, Sayers TJ (2015) Withanolide E sensitizes renal carcinoma cells to TRAIL-induced apoptosis by increasing cFLIP degradation. Cell Death Dis. doi:10.1038/cddis.2015.38

    PubMed  PubMed Central  Google Scholar 

  29. Zhou W, Yuan J (2014) Necroptosis in health and diseases. Semin Cell Dev Biol 35:14–23. doi:10.1016/j.semcdb.2014.07.013

    Article  PubMed  Google Scholar 

  30. de Almagro MC, Vucic D (2015) Necroptosis: pathway diversity and characteristics. Semin Cell Dev Biol 39:56–62. doi:10.1016/j.semcdb.2015.02.002

    Article  PubMed  Google Scholar 

  31. Humphries F, Yang S, Wang B, Moynagh PN (2015) RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ 22(2):225–236. doi:10.1038/cdd.2014.126

    Article  CAS  PubMed  Google Scholar 

  32. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M, Cain K, MacFarlane M, Hacker G, Leverkus M (2011) cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43(3):449–463. doi:10.1016/j.molcel.2011.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J, MacFarlane M, Cain K, Meier P (2011) The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43(3):432–448. doi:10.1016/j.molcel.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  34. Sun LM, Wang HY, Wang ZG, He SD, Chen S, Liao DH, Wang L, Yan JC, Liu WL, Lei XG, Wang XD (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227. doi:10.1016/j.cell.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  35. Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, Chan FK, Wu H (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150(2):339–350. doi:10.1016/j.cell.2012.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu XN, Yang ZH, Wang XK, Zhang Y, Wan H, Song Y, Chen X, Shao J, Han J (2014) Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis. Cell Death Differ 21(11):1709–1720. doi:10.1038/cdd.2014.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Silke J, Rickard JA, Gerlic M (2015) The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol 16(7):689–697. doi:10.1038/ni.3206

    Article  CAS  PubMed  Google Scholar 

  38. Tsuchiya Y, Nakabayashi O, Nakano H (2015) FLIP the switch: regulation of apoptosis and necroptosis by cFLIP. Int J Mol Sci 16(12):30321–30341. doi:10.3390/ijms161226232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fulda S (2014) Therapeutic exploitation of necroptosis for cancer therapy. Semin Cell Dev Biol 35:51–56. doi:10.1016/j.semcdb.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  40. Salaun B, Coste I, Rissoan MC, Lebecque SJ, Renno T (2006) TLR3 can directly trigger apoptosis in human cancer cells. J Immunol 176(8):4894–4901

    Article  CAS  PubMed  Google Scholar 

  41. Salaun B, Lebecque S, Matikainen S, Rimoldi D, Romero P (2007) Toll-like receptor 3 expressed by melanoma cells as a target for therapy. Clin Cancer Res 13(15 Pt 1):4565–4574. doi:10.1158/1078-0432.CCR-07-0274

    Article  CAS  PubMed  Google Scholar 

  42. Weber A, Kirejczyk Z, Besch R, Potthoff S, Leverkus M, Hacker G (2010) Proapoptotic signalling through Toll-like receptor-3 involves TRIF-dependent activation of caspase-8 and is under the control of inhibitor of apoptosis proteins in melanoma cells. Cell Death Differ 17(6):942–951. doi:10.1038/cdd.2009.190

    Article  CAS  PubMed  Google Scholar 

  43. Estornes Y, Toscano F, Virard F, Jacquemin G, Pierrot A, Vanbervliet B, Bonnin M, Lalaoui N, Mercier-Gouy P, Pacheco Y, Salaun B, Renno T, Micheau O, Lebecque S (2012) dsRNA induces apoptosis through an atypical death complex associating TLR3 to caspase-8. Cell Death Differ 19(9):1482–1494. doi:10.1038/cdd.2012.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee S, Yagita H, Sayers TJ, Celis E (2010) Optimized combination therapy using bortezomib, TRAIL and TLR agonists in established breast tumors. Cancer Immunol Immun 59(7):1073–1081. doi:10.1007/s00262-010-0834-0

    Article  CAS  Google Scholar 

  45. Krown SE, Kerr D, Stewart WE, Field AK, Oettgen HF (1985) Phase-I trials of poly(I, C) complexes in advanced cancer. J Biol Resp Modif 4(6):640–649

    CAS  Google Scholar 

  46. Jasani B, Navabi H, Adams M (2009) Ampligen: a potential toll-like 3 receptor adjuvant for immunotherapy of cancer. Vaccine 27(25–26):3401–3404. doi:10.1016/j.vaccine.2009.01.071

    Article  CAS  PubMed  Google Scholar 

  47. Navabi H, Jasani B, Reece A, Clayton A, Tabi Z, Donninger C, Mason M, Adams M (2009) A clinical grade poly I:C-analogue (Ampligen (R)) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro. Vaccine 27(1):107–115. doi:10.1016/j.vaccine.2008.10.024

    Article  CAS  PubMed  Google Scholar 

  48. Nagato T, Lee YR, Harabuchi Y, Celis E (2014) Combinatorial immunotherapy of polyinosinic–polycytidylic acid and blockade of programmed death-ligand 1 induce effective CD8 T-cell responses against established tumors. Clin Cancer Res 20(5):1223–1234. doi:10.1158/1078-0432.Ccr-13-2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cho HI, Jung SH, Sohn HJ, Celis E, Kim TG (2015) An optimized peptide vaccine strategy capable of inducing multivalent CD8+ T cell responses with potent anti-tumor effects. Oncoimmunology. doi:10.1080/2162402X.2015.1043504e1043504

    PubMed  PubMed Central  Google Scholar 

  50. Swers JS, Grinberg L, Wang L, Feng H, Lekstrom K, Carrasco R, Xiao Z, Inigo I, Leow CC, Wu H, Tice DA, Baca M (2013) Multivalent scaffold proteins as superagonists of TRAIL receptor 2-induced apoptosis. Mol Cancer Ther 12(7):1235–1244. doi:10.1158/1535-7163.Mct-12-1107

    Article  CAS  PubMed  Google Scholar 

  51. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72. doi:10.1146/annurev-immunol-032712-100008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Andrew Sayers for his assistance with the artwork. This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN26120080001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government. This research was supported [in part] by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research and the University of Arizona College of Agriculture and Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Poonam Tewary or Thomas J. Sayers.

Ethics declarations

Conflict of interest

Thomas Sayers is an inventor on US patent (No. 9,238,069) Method of Sensitizing Cancer Cells to the Cytotoxic Effects of Death Receptor Ligands for Cancer Treatment assigned to the US Government. Thomas Sayers, A. A. Leslie Gunatilaka and Poonam Tewary have filed a patent application based on ability of active 17-beta hydroxy withanolides to promote death in cancer cells in response to TNF family death ligands and TLR3 ligands such as poly(I:C).

Additional information

This paper is a Focussed Research Review based on a presentation given at the Fifteenth International Conference on Progress in Vaccination against Cancer (PIVAC 15), held in Tübingen, Germany, 6th–8th October, 2015. It is part of a Cancer Immunology, Immunotherapy series of Focussed Research Reviews and meeting report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tewary, P., Gunatilaka, A.A.L. & Sayers, T.J. Using natural products to promote caspase-8-dependent cancer cell death. Cancer Immunol Immunother 66, 223–231 (2017). https://doi.org/10.1007/s00262-016-1855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1855-0

Keywords

Navigation