Skip to main content

Advertisement

Log in

Wilms tumor 1 peptide vaccination combined with temozolomide against newly diagnosed glioblastoma: safety and impact on immunological response

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

To investigate the safety of combined Wilms tumor 1 peptide vaccination and temozolomide treatment of glioblastoma, a phase I clinical trial was designed. Seven patients with histological diagnosis of glioblastoma underwent concurrent radiotherapy and temozolomide therapy. Patients first received Wilms tumor 1 peptide vaccination 1 week after the end of combined concurrent radio/temozolomide therapy, and administration was continued once per week for 7 weeks. Temozolomide maintenance was started and performed for up to 24 cycles, and the observation period for safety encompassed 6 weeks from the first administration of maintenance temozolomide. All patients showed good tolerability during the observation period. Skin disorders, such as grade 1/2 injection-site reactions, were observed in all seven patients. Although grade 3 lymphocytopenia potentially due to concurrent radio/temozolomide therapy was observed in five patients (71.4 %), no other grade 3/4 hematological or neurological toxicities were observed. No autoimmune reactions were observed. All patients are still alive, and six are on Wilms tumor 1 peptide vaccination without progression, yielding a progression-free survival from histological diagnosis of 5.2–49.1 months. Wilms tumor 1 peptide vaccination was stopped in one patient after 12 injections by the patient’s request. The safety profile of the combined Wilms tumor 1 peptide vaccination and temozolomide therapy approach for treating glioblastoma was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CR:

Complete response

CTCAE:

Common Terminology Criteria for Adverse Events

DSMC:

Data Safety Monitoring Committee

DTH:

Delayed-type hypersensitivity

EORTC/NCIC:

European Organization for Research and Treatment of Cancer/National Cancer Institute of Canada

FACS:

Fluorescence-activated cell sorting

GBM:

Glioblastoma

GTR:

Gross total resection

mAbs:

Monoclonal antibodies

NR:

No recurrence

PR:

Partial resection

Gy:

Gray

IDH1:

Isocitrate dehydrogenase 1

ORR:

Objective response rate

OS:

Overall survival

PBMCs:

Peripheral blood mononuclear cells

PD:

Progressive disease

PFS:

Progression-free survival

PS:

Performance status

RECIST:

Response Evaluation Criteria in Solid Tumors

RT:

Radiotherapy

RPA:

Recursive partitioning analysis

TMZ:

Temozolmide

TPS:

Total prognostic score

WT1:

Wilms tumor 1

References

  1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  2. Yu JS, Liu G, Ying H, Yong WH, Black KL et al (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979

    Article  CAS  PubMed  Google Scholar 

  3. Yamanaka R, Homma J, Yajima N, Tsuchiya N, Sano M et al (2005) Clinical evaluation of personalized peptide vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167

    Article  CAS  PubMed  Google Scholar 

  4. Terasaki M, Shibui S, Narita Y, Fujimaki T, Aoki T et al (2010) Phase I trial of a personalized peptide vaccine for patients positive for human leukocyte antigen-A24 with recurrent or progressive glioblastoma multiforme. J Clin Oncol 29:337–344

    Article  PubMed  Google Scholar 

  5. Oka Y, Tsuboi A, Elisseeva OA, Udaka K, Sugiyama H (2002) WT1 as a novel target antigen for cancer immunotherapy. Curr Cancer Drug Targets 2:45–54

    Article  CAS  PubMed  Google Scholar 

  6. Tsuboi A, Oka Y, Ogawa H, Elisseeva OA, Tamaki H et al (1999) Constitutive expression of the Wilms’ tumor gene WT1 inhibits the differentiation of myeloid progenitor cells but promotes the proliferation in response to granulocyte-colony stimulation factor (G-CSF). Leuk Res 23:499–505

    Article  CAS  PubMed  Google Scholar 

  7. Oka Y, Udaka K, Tsuboi A, Elisseeva OA, Ogawa H et al (2000) Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. J Immunol 164:1873–1880

    Article  CAS  PubMed  Google Scholar 

  8. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337

    Article  PubMed  Google Scholar 

  9. Oji Y, Suzuki T, Nakano Y, Maruno M, Nakatsuka S et al (2004) Overexpression of the Wilms’ tumor gene WT1 in primary astrocytic tumors. Cancer Sci 95:822–827

    Article  CAS  PubMed  Google Scholar 

  10. Izumoto S, Tsuboi A, Oka Y, Suzuki T, Hashiba T et al (2008) Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 108:963–971

    Article  CAS  PubMed  Google Scholar 

  11. Khan RB, Raizer JJ, Malkin MG, Bazylewicz KA, Abrey LE (2002) A phase II study of extended low-dose temozolomide in recurrent malignant gliomas. Neuro Oncol 4:39–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Brandes AA, Tosoni A, Cavallo G, Bertorelle R, Gioia V et al (2006) Temozolomide 3 weeks on and 1 week off as first-line therapy for recurrent glioblastoma: phase II study from Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer 95:1155–1160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wick A, Felsberg J, Steinbach JP, Herrlinger U, Platten M et al (2007) Efficacy and tolerability of temozolomide in an alternating weekly regimen in patients with recurrent glioma. J Clin Oncol 25:3357–3361

    Article  CAS  PubMed  Google Scholar 

  14. Perry JR, Belanger K, Mason WP, Fulton D, Kavan P et al (2010) Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol 28:2051–2057

    Article  CAS  PubMed  Google Scholar 

  15. Kong DS, Lee JI, Kim JH, Kim ST, Kim WS et al (2010) Phase II trial of low-dose continuous (metronomic) treatment of temozolomide for recurrent glioblastoma. Neuro Oncol 12:289–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Abacioglu U, Caglar HB, Yumuk PF, Akgun Z, Atasoy BM et al (2011) Efficacy of protracted dose-dense temozolomide in patients with recurrent high-grade glioma. J Neuro Oncol 103:585–593

    Article  CAS  Google Scholar 

  17. Omuro A, Chan TA, Abrey LE, Khasraw M, Reiner AS et al (2013) Phase II trial of continuous low-dose temozolomide for patients with recurrent malignant glioma. Neuro Oncol 15:242–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Chiba Y, Hashimoto N, Tsuboi A, Oka Y, Murao A et al (2010) Effects of concomitant temozolomide and radiation therapies on WT1-specific T cells in malignant glioma. Jpn J Clin Oncol 40:395–408

    Article  PubMed  Google Scholar 

  19. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  20. Momota S, Narita Y, Miyakita Y, Shibui S (2013) Secondary hematological malignancies associated with temozolomide in patients with glioma. Neuro Oncol 15:1445–1450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T et al (2004) Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci U S A 101:13885–13890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Tsuboi A, Oka Y, Udaka K, Murakami M, Masuda T et al (2002) Enhanced induction of human WT1-specific cytotoxic T lymphocytes with a 9-mer WT1 peptide modified at HLA-A*2402-binding residues. Cancer Immunol Immunother 51:614–620

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR (2011) Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acid Res 39:D913–D919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Gorlia T, van den Bent MJ, Hegi ME, Mirimanoff RO, Weller M et al (2008) Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol 9:29–38

    Article  PubMed  Google Scholar 

  25. Li J, Wang M, Won M, Shaw EG, Coughlin C et al (2011) Validation and simplification of the Radiation Therapy Oncology Group recursive partitioning analysis classification for glioblastoma. Int J Radiat Oncol Biol Phys 81:623–630

    Article  PubMed Central  PubMed  Google Scholar 

  26. Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601

    Article  CAS  PubMed  Google Scholar 

  27. Stupp R, Dietrich PY, Ostermann Kraljevic S, Pica A, Maillard I, Maeder P et al (2002) Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 20:1375–1382

    Article  CAS  PubMed  Google Scholar 

  28. Su YB, Sohn S, Krown SE, Livingston PO, Wolchok JD et al (2004) Selective CD4_ lymphopenia in melanoma patients treated with temozolomide: a toxicity with therapeutic implications. J Clin Oncol 22:610–616

    Article  CAS  PubMed  Google Scholar 

  29. Fujimoto Y, Hashimoto N, Kinoshita M, Miyazaki Y, Tanaka S et al (2012) Hepatitis B virus reactivation associated with temozolomide for malignant glioma: a case report and recommendation for prophylaxis. Int J Clin Oncol 17:290–293

    Article  PubMed  Google Scholar 

  30. Appay V, Voelter V, Rufer N, Reynard S, Jandus C et al (2007) Combination of transient lymphodepletion with busulfan and fludarabine and peptide vaccination in a phase I clinical trial for patients with advanced melanoma. J Immunother 30:240–250

    Article  CAS  PubMed  Google Scholar 

  31. Heimberger AB, Sun W, Hussain SF, Dey M, Crutcher L et al (2008) Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neuro Oncol 10:98–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Park SD, Kim CH, Kim CK, Park JA, Sohn HJ et al (2007) Cross-priming by temozolomide enhances antitumor immunity of dendritic cell vaccination in murine brain tumor model. Vaccine 25:3485–3491

    Article  CAS  PubMed  Google Scholar 

  33. Kim CH, Woo SJ, Park JS, Kim HS, Park MY et al (2007) Enhanced antitumour immunity by combined use of temozolomide and TAT-survivin pulsed dendritic cells in a murine glioma. Immunology 122:615–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Jordan JT, Sun W, Farzana Hussain S, DeAngulo G, Prabhu SS et al (2008) Preferential migration of regulatory T cells mediated by glioma secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother 57:123–131

    Article  CAS  PubMed  Google Scholar 

  35. Banissi C, Ghiringhelli F, Chen L, Carpentier AF (2009) Treg depletion with a low-dose metronomic temozolomide regimen in rat glioma model. Cancer Immunol Immunother 58:1627–1634

    Article  CAS  PubMed  Google Scholar 

  36. Sanchez-Perez LA, Choi BD, Archer GE, Cui X, Flores C et al (2013) Myeloablative temozolomide enhances CD8 T-cell responses to vaccine and is required for efficacy against brain tumors in mice. PLoS One 8:e59082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155:1063–1074

    Article  CAS  PubMed  Google Scholar 

  38. Dudley ME, Robbins PF, Yang JC, Yang JC, Hwu P et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sampson JH, Aldape KD, Archer GE, Coan A, Desjardins A et al (2011) Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 13:324–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Fadul CE, Fisher JL, Gui J, Hampton TH, Côté AL et al (2011) Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme. Neuro Oncol 13:393–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Tomoe Umeda, Department of Cancer Immunotherapy, for her technical assistance. They would also thank Ms. Mariko Kakinoki and Ms. Yuko Komiyama, Department of Neurosurgery, for their secretarial assistance. This work was supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (No. 23592123 to Naoya Hashimoto and No. 22591609 to Akihiro Tsuboi).

Conflict of interest

The funding source has no involvement in the study design, the collection, analysis, and interpretation of data, and in the writing of the report.

Ethical standards

This study was conducted according to the principles expressed in the Declaration of Helsinki and approved by the ethics review boards of the Osaka University Faculty of Medicine. Written informed consents were obtained from all patients enrolled.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Hashimoto.

Additional information

Naoya Hashimoto and Akihiro Tsuboi have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, N., Tsuboi, A., Kagawa, N. et al. Wilms tumor 1 peptide vaccination combined with temozolomide against newly diagnosed glioblastoma: safety and impact on immunological response. Cancer Immunol Immunother 64, 707–716 (2015). https://doi.org/10.1007/s00262-015-1674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1674-8

Keywords

Navigation