Skip to main content

Advertisement

Log in

Identification of a MHC class-II restricted epitope in carcinoembryonic antigen

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

The carcinoembryonic antigen (CEA) is extensively expressed on the vast majority of colorectal, gastric, and pancreatic carcinomas, and, therefore, is a good target for tumor immunotherapy. CD4+ T-helper (Th) cells play a critical role in initiation, regulation, and maintenance of immune responses. In this study, we sought to identify Th epitopes derived from CEA which can induce CEA-specific Th responses. The combined application with cytotoxic T lymphocyte (CTL) epitopes would be more potent than tumor vaccines that primarily activate CTL alone.

Methods

We utilized a combined approach of using a computer-based algorithm analysis TEPITOPE and in vitro biological analysis to identify Th epitopes in CEA.

Results

Initial screening of healthy donors showed that all five predicted peptides derived from CEA could induce peptide-specific T-cell proliferation in vitro. We characterized these CEA epitopes by establishing and analyzing peptide-specific T-cell clones. It was shown that CD4+ T-cells specific for the CEA116 epitope can recognize and respond to naturally processed CEA protein and CEA116 epitope can be promiscuously presented by commonly found major histocompatibility complex (MHC) alleles. Furthermore, it was demonstrated that immunization of human leukocyte antigen (HLA)-DR4 transgenic mice with CEA116 peptide elicited antigen-specific Th responses which can recognize the antigenic peptides derived from CEA protein and CEA-positive tumors.

Conclusion

The MHC class II-restricted epitope CEA116 could be used in the design of peptide-based tumor vaccine against several common cancers expressing CEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3 A
Fig. 4
Fig. 5
Fig. 6
Fig. 7A,B
Fig. 8A,B

Similar content being viewed by others

References

  1. Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787

    CAS  PubMed  Google Scholar 

  2. Alexander J, Sidney J, Southwood S, Ruppert J, Oseroff C, Maewal A, Snoke K, Serra HM, Kubo RT, Sette A (1994) Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity 1:751

    CAS  PubMed  Google Scholar 

  3. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245

    CAS  PubMed  Google Scholar 

  4. Barnett T, Goebel SJ, Nothdurft MA, Elting JJ (1988) Carcinoembryonic antigen family: characterization of cDNAs coding for NCA and CEA and suggestion of non-random sequence variation in their conserved loop-domains. Genomics 3:59

    PubMed  Google Scholar 

  5. Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR (1997) Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 186:65

    CAS  PubMed  Google Scholar 

  6. Chaux P, Vantomme V, Stroobant V, Thielemans K, Corthals J, Luiten R, Eggermont AM, Boon T, van der Bruggen P (1999) Identification of MAGE-3 epitopes presented by HLA-DR molecules to CD4(+) T lymphocytes [see comments]. J Exp Med 189:767

    CAS  PubMed  Google Scholar 

  7. Cochlovius B, Stassar M, Christ O, Raddrizzani L, Hammer J, Mytilineos I, Zoller M (2000) In vitro and in vivo induction of a Th cell response toward peptides of the melanoma-associated glycoprotein 100 protein selected by the TEPITOPE program. J Immunol 165:4731

    PubMed  Google Scholar 

  8. Congia M, Patel S, Cope AP, De Virgiliis S, Sonderstrup G (1998) T-cell epitopes of insulin defined in HLA-DR4 transgenic mice are derived from preproinsulin and proinsulin. Proc Natl Acad Sci USA 95:3833

    Article  PubMed  Google Scholar 

  9. Curtis JE, Hersh EM (1972) The human secondary immune response to Keyhole limpet haemocyanin. Clin Exp Immunol 10:171

    PubMed  Google Scholar 

  10. Engelhard VH (1994) Structure of peptides associated with class I and class II MHC molecules. Annu Rev Immunol 12:181

    Article  CAS  PubMed  Google Scholar 

  11. Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 98:8809

    CAS  PubMed  Google Scholar 

  12. Gao FG, Khammanivong V, Liu WJ, Leggatt GR, Frazer IH, Fernando GJ (2002) Antigen-specific CD4+ T-cell help is required to activate a memory CD8+ T-cell to a fully functional tumor killer cell. Cancer Res 62:6438

    PubMed  Google Scholar 

  13. Geluk A, Taneja V, van Meijgaarden KE, de Vries RR, David CS, Ottenhoff TH (1998) HLA-DR/DQ transgenic, class II deficient mice as a novel model to select for HSP T-cell epitopes with immunotherapeutic or preventative vaccine potential. Biotherapy 10:191

    PubMed  Google Scholar 

  14. Geluk A, Taneja V, van Meijgaarden KE, Zanelli E, Abou-Zeid C, Thole JE, de Vries RR, David CS, Ottenhoff TH (1998) Identification of HLA class II-restricted determinants of Mycobacterium tuberculosis-derived proteins by using HLA-transgenic, class II-deficient mice. Proc Natl Acad Sci USA 95:10797

    Article  PubMed  Google Scholar 

  15. Hammarstrom S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9:67

    CAS  PubMed  Google Scholar 

  16. Hammer J, Sturniolo T, Sinigaglia F (1997) HLA class II binding specificity and autoimmunity. Adv Immunol 66:67

    PubMed  Google Scholar 

  17. Hodge JW (1996) Carcinoembryonic antigen as a target for cancer vaccines. Cancer Immunol Immunother 43:127

    Article  Google Scholar 

  18. Jaeger E, Bernhard H, Romero P, Ringhoffer M, Arand M, Karbach J, Ilsemann C, Hagedorn M, Knuth A (1996) Generation of cytotoxic T-cell responses with synthetic melanoma-associated peptides in vivo: implications for tumor vaccines with melanoma-associated antigens. Int J Cancer 66:162

    Article  PubMed  Google Scholar 

  19. Jager E, Ringhoffer M, Dienes HP, Arand M, Karbach J, Jager D, Ilsemann C, Hagedorn M, Oesch F, Knuth A (1996) Granulocyte-macrophage-colony-stimulating factor enhances immune responses to melanoma-associated peptides in vivo. Int J Cancer 67:54

    PubMed  Google Scholar 

  20. Jager E, Jager D, Karbach J, Chen YT, Ritter G, Nagata Y, Gnjatic S, Stockert E, Arand M, Old LJ, Knuth A (2000) Identification of NY-ESO-1 epitopes presented by human histocompatibility antigen (HLA)-DRB4*0101-0103 and recognized by CD4(+) T lymphocytes of patients with NY-ESO-1-expressing melanoma. J Exp Med 191:625

    Article  Google Scholar 

  21. James RF, Edwards S, Hui KM, Bassett PD, Grosveld F (1991) The effect of class II gene transfection on the tumourigenicity of the H-2K-negative mouse leukaemia cell line K36.16. Immunology 72:213

    PubMed  Google Scholar 

  22. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135

    CAS  PubMed  Google Scholar 

  23. Kalams SA, Walker BD (1998) The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses [comment]. J Exp Med 188:2199

    CAS  PubMed  Google Scholar 

  24. Kawashima I, Hudson SJ, Tsai V, Southwood S, Takesako K, Appella E, Sette A, Celis E (1998) The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 59:1

    Article  Google Scholar 

  25. Kawashima I, Tsai V, Southwood S, Takesako K, Sette A, Celis E (1999) Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryonic antigen and HER-2/neu by primary in vitro immunization with peptide-pulsed dendritic cells. Cancer Res 59:431

    CAS  PubMed  Google Scholar 

  26. Kobayashi H, Kennedy R, Lu J, Davila E, Celis E (2000) MHC-binding peptides as immunotherapeutics for cancer. Immunol Invest 29:105

    PubMed  Google Scholar 

  27. Lu J, Celis E (2000) Use of two predictive algorithms of the world wide web for the identification of tumor-reactive T-cell epitopes. Cancer Res 60:5223

    PubMed  Google Scholar 

  28. Manici S, Sturniolo T, Imro MA, Hammer J, Sinigaglia F, Noppen C, Spagnoli G, Mazzi B, Bellone M, Dellabona P, Protti MP (1999) Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11 [see comments]. J Exp Med 189:871

    CAS  PubMed  Google Scholar 

  29. Marchand M, Weynants P, Rankin E, Arienti F, Belli F, Parmiani G, Cascinelli N, Bourlond A, Vanwijck R, Humblet Y (1995) Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int J Cancer 63:883

    CAS  PubMed  Google Scholar 

  30. Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD, Melief CJ, Ildstad ST, Kast WM, Deleo AB (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1:1297

    CAS  PubMed  Google Scholar 

  31. McNeel DG, Nguyen LD, Disis ML (2001) Identification of T helper epitopes from prostatic acid phosphatase. Cancer Res 61:5161

    PubMed  Google Scholar 

  32. Mitchell EP (1998) Role of carcinoembryonic antigen in the management of advanced colorectal cancer. Semin Oncol 25:12

    CAS  Google Scholar 

  33. Mumberg D, Monach PA, Wanderling S, Philip M, Toledano AY, Schreiber RD, Schreiber H (1999) CD4(+) T-cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-gamma. Proc Natl Acad Sci USA 96:8633

    CAS  PubMed  Google Scholar 

  34. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells [see comments]. Nat Med 4:328

    CAS  PubMed  Google Scholar 

  35. Nukaya I, Yasumoto M, Iwasaki T, Ideno M, Sette A, Celis E, Takesako K, Kato I (1999) Identification of HLA-A24 epitope peptides of carcinoembryonic antigen which induce tumor-reactive cytotoxic T lymphocyte. Int J Cancer 80:92

    CAS  PubMed  Google Scholar 

  36. Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ (1998) Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 187:693

    PubMed  Google Scholar 

  37. Pardoll DM (1999) Inducing autoimmune disease to treat cancer. Proc Natl Acad Sci USA 96:5340

    CAS  PubMed  Google Scholar 

  38. Pardoll DM, Topalian SL (1998) The role of CD4+ T-cell responses in antitumor immunity. Curr Opin Immunol 10:588

    CAS  PubMed  Google Scholar 

  39. Porgador A, Snyder D, Gilboa E (1996) Induction of antitumor immunity using bone marrow-generated dendritic cells. J Immunol 156:2918

    CAS  PubMed  Google Scholar 

  40. Raju R, Spack EG, David CS (2001) Acetylcholine receptor peptide recognition in HLA DR3-transgenic mice: in vivo responses correlate with MHC-peptide binding. J Immunol 167:1118

    PubMed  Google Scholar 

  41. Ras E, van der Burg SH, Zegveld ST, Brandt RM, Kuppen PJ, Offringa R, Warnarr SO, van de Velde CJ, Melief CJ (1997) Identification of potential HLA-A *0201 restricted CTL epitopes derived from the epithelial cell adhesion molecule (Ep-CAM) and the carcinoembryonic antigen (CEA). Hum Immunol 53:81

    CAS  PubMed  Google Scholar 

  42. Ressing ME, van Driel WJ, Brandt RM, Kenter GG, de Jong JH, Bauknecht T, Fleuren GJ, Hoogerhout P, Offringa R, Sette A, Celis E, Grey H, Trimbos BJ, Kast WM, Melief CJ (2000) Detection of T helper responses, but not of human papillomavirus-specific cytotoxic T lymphocyte responses, after peptide vaccination of patients with cervical carcinoma. J Immunother 23:255

    Article  CAS  PubMed  Google Scholar 

  43. Ribas A, Butterfield L, Hu B, Dissette V, Chen A, Koh A, Amarnani S, Glaspy J, McBride W, Economou J (2000) Generation of T-cell immunity to a murine melanoma using MART-1-engineered dendritic cells. J Immunother 23:59

    Article  PubMed  Google Scholar 

  44. Rosenberg SA (1999) A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10:281

    CAS  PubMed  Google Scholar 

  45. Rosenberg SA (2001) Progress in human tumour immunology and immunotherapy. Nature 411:380

    CAS  PubMed  Google Scholar 

  46. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. [see comments]. Nat Med 4:321

    CAS  PubMed  Google Scholar 

  47. Schroers R, Davis CM, Wagner HJ, Chen SY (2002) Lentiviral transduction of human T-lymphocytes with a RANTES intrakine inhibits human immunodeficiency virus type 1 infection. Gene Ther 9:889

    Article  Google Scholar 

  48. Schroers R, Huang XF, Hammer J, Zhang J, Chen SY (2002) Identification of HLA DR7-restricted epitopes from human telomerase reverse transcriptase recognized by CD4+ T-helper cells. Cancer Res 62:2600

    PubMed  Google Scholar 

  49. Shimizu K, Thomas EK, Giedlin M, Mule JJ (2001) Enhancement of tumor lysate- and peptide-pulsed dendritic cell-based vaccines by the addition of foreign helper protein. Cancer Res 61:2618

    CAS  PubMed  Google Scholar 

  50. Shively JE, Beatty JD (1985) CEA-related antigens: molecular biology and clinical significance. Crit Rev Oncol Hematol 2:355

    PubMed  Google Scholar 

  51. Sonderstrup G, McDevitt H (1998) Identification of autoantigen epitopes in MHC class II transgenic mice. Immunol Rev 164:129

    PubMed  Google Scholar 

  52. Sonderstrup G, Cope AP, Patel S, Congia M, Hain N, Hall FC, Parry SL, Fugger LH, Michie S, McDevitt HO (1999) HLA class II transgenic mice: models of the human CD4+ T-cell immune response. Immunol Rev 172:335

    PubMed  Google Scholar 

  53. Stober D, Jomantaite I, Schirmbeck R, Reimann J (2003) NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted CD8+ T cells in vivo. J Immunol 170:2540

    PubMed  Google Scholar 

  54. Tatsumi T, Kierstead LS, Ranieri E, Gesualdo L, Schena FP, Finke JH, Bukowski RM, Mueller-Berghaus J, Kirkwood JM, Kwok WW, Storkus WJ (2002) Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T-cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J Exp Med 196:619

    CAS  PubMed  Google Scholar 

  55. Thompson JA, Grunert F, Zimmermann W (1991) Carcinoembryonic antigen gene family: molecular biology and clinical perspectives. J Clin Lab Anal 5:344

    CAS  PubMed  Google Scholar 

  56. Topalian SL, Rivoltini L, Mancini M, Markus NR, Robbins PF, Kawakami Y, Rosenberg SA (1994) Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc Natl Acad Sci USA 91:9461

    CAS  PubMed  Google Scholar 

  57. Touloukian CE, Leitner WW, Topalian SL, Li YF, Robbins PF, Rosenberg SA, Restifo NP (2000) Identification of a MHC class II-restricted human gp100 epitope using DR4-IE transgenic mice. J Immunol 164:3535

    CAS  Google Scholar 

  58. Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J (1995) Generation of human cytotoxic T-cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. [see comments]. J Natl Cancer Inst 87:982

    CAS  PubMed  Google Scholar 

  59. Tsang KY, Zhu M, Nieroda CA, Correale P, Zaremba S, Hamilton JM, Cole D, Lam C, Schlom J (1997) Phenotypic stability of a cytotoxic T-cell line directed against an immunodominant epitope of human carcinoembryonic antigen. Clin Cancer Res 3:2439

    PubMed  Google Scholar 

  60. Weber JS, Hua FL, Spears L, Marty V, Kuniyoshi C, Celis E (1999) A phase I trial of an HLA-A1 restricted MAGE-3 epitope peptide with incomplete Freund’s adjuvant in patients with resected high-risk melanoma. J Immunother 22:431

    CAS  PubMed  Google Scholar 

  61. Zaks TZ, Rosenberg SA (1998) Immunization with a peptide epitope (p369-377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res 58:4902

    CAS  PubMed  Google Scholar 

  62. Zarour HM, Kirkwood JM, Kierstead LS, Herr W, Brusic V, Slingluff CL Jr, Sidney J, Sette A, Storkus WJ (2000) Melan-A/MART-1(51-73) represents an immunogenic HLA-DR4-restricted epitope recognized by melanoma-reactive CD4(+) T cells. Proc Natl Acad Sci USA 97:400

    Article  PubMed  Google Scholar 

  63. Zeng G, Wang X, Robbins PF, Rosenberg SA, Wang RF (2001) CD4(+) T cell recognition of MHC class II-restricted epitopes from NY-ESO-1 presented by a prevalent HLA DP4 allele: association with NY-ESO-1 antibody production. Proc Natl Acad Sci USA 98:3964

    Article  PubMed  Google Scholar 

  64. Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA (1994) Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 179:973

    CAS  PubMed  Google Scholar 

  65. Zwaveling S, Ferreira-Mota SC, Nouta J, Johnson M, Lipford GB, Offringa R, van der Burg SH, Melief CJ (2002) Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol 169:350

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements. We thank J. Zhang for his expert advice, L. Rollins for technical assistance, and volunteers for donating their blood. This work was supported by grants from the U.S. Army Breast Cancer Research Program BC990963 (X.F.H.) and NIH AI48711 (S.Y.C.). This work was also supported in part by MithraGen Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Yi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, L., Schroers, R., Hammer, J. et al. Identification of a MHC class-II restricted epitope in carcinoembryonic antigen. Cancer Immunol Immunother 53, 391–403 (2004). https://doi.org/10.1007/s00262-003-0455-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-003-0455-y

Keywords

Navigation