Skip to main content
Log in

CT IVC venogram: normalized quantitative criteria for patency and thrombosis

  • Interventional Radiology
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Establish normal attenuation ratios for vein to artery on CT IVC venogram and determine a vascular attenuation ratio diagnostic of thrombus.

Methods

This retrospective, HIPAA-compliant study included 56 CT IVC venograms. Images were reviewed for the presence of femoral vein or IVC thrombus. Attenuation ratios for each vein and its corresponding artery were calculated by two observers and averaged in four venous stations (right and left femoral veins, and IVC at the confluence of the iliac veins and at the left renal vein). The reference standard for the absence of thrombus was clinical follow-up and for the presence of thrombus it was thrombectomy or catheter venogram. Receiver operating characteristic (ROC) analysis was performed using ratios from one venous station and threshold for thrombus was determined using the Youden’s index.

Results

36 of 56 CTs demonstrated no thrombus. 20 CTs demonstrated thrombus, confirmed in eight patients. For CTs with no thrombus, median ratios among the venous stations ranged from 0.89 (IQR 0.83–0.93) to 0.91 (IQR 0.86–0.94). ROC analysis of ratios from a single representative station (left femoral vein, n = 4 confirmed clots) demonstrated an area under the curve (AUC) of 0.994 (p = 0.001) and a threshold of 0.67 for diagnosing thrombus [sensitivity 100% (95% CI 39.76–100%), specificity 97.5% (86.84–99.94%)].

Conclusion

The normal attenuation ratio of vein to artery in the absence of venous thrombus on a 3-min delay CT IVC venogram is approximately 0.91. A ratio less than 0.67 is highly suggestive of thrombus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alkhouli M, Morad M, Narins CR, Raza F, Bashir R (2016) Inferior Vena Cava Thrombosis. JACC Cardiovascular interventions 9 (7):629-643. https://doi.org/10.1016/j.jcin.2015.12.268

    Article  PubMed  Google Scholar 

  2. Stein PD, Matta F, Yaekoub AY (2008) Incidence of vena cava thrombosis in the United States. Am J Cardiol 102 (7):927-929. https://doi.org/10.1016/j.amjcard.2008.05.046

    Article  PubMed  Google Scholar 

  3. McAree BJ, O'Donnell ME, Fitzmaurice GJ, Reid JA, Spence RA, Lee B (2013) Inferior vena cava thrombosis: a review of current practice. Vasc Med 18 (1):32-43. https://doi.org/10.1177/1358863X12471967

    Article  CAS  PubMed  Google Scholar 

  4. Ho VB, van Geertruyden PH, Yucel EK, Rybicki FJ, Baum RA, Desjardins B, Flamm SD, Foley WD, Jaff MR, Koss SA, Mammen L, Mansour MA, Mohler ER, 3rd, Narra VR, Schenker MP (2011) ACR Appropriateness Criteria((R)) on suspected lower extremity deep vein thrombosis. Journal of the American College of Radiology : JACR 8 (6):383-387. https://doi.org/10.1016/j.jacr.2011.02.016

    Article  PubMed  Google Scholar 

  5. Kassai B, Boissel JP, Cucherat M, Sonie S, Shah NR, Leizorovicz A (2004) A systematic review of the accuracy of ultrasound in the diagnosis of deep venous thrombosis in asymptomatic patients. Thromb Haemost 91 (4):655-666. https://doi.org/10.1160/TH03-11-0722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tapson VF (2008) Acute pulmonary embolism. N Engl J Med 358 (10):1037-1052. https://doi.org/10.1056/NEJMra072753

    Article  CAS  PubMed  Google Scholar 

  7. Doshi AM, Hoffman D, Kierans AS, Ream JM, Rosenkrantz AB (2015) Differentiation of deep venous thrombosis from femoral vein mixing artifact on routine abdominopelvic CT. Abdom Imaging 40 (8):3191-3195. https://doi.org/10.1007/s00261-015-0525-6

    Article  PubMed  Google Scholar 

  8. Sheth S, Fishman EK (2007) Imaging of the inferior vena cava with MDCT. AJR Am J Roentgenol 189 (5):1243-1251. https://doi.org/10.2214/AJR.07.2133

    Article  PubMed  Google Scholar 

  9. Cham MD, Yankelevitz DF, Shaham D, Shah AA, Sherman L, Lewis A, Rademaker J, Pearson G, Choi J, Wolff W, Prabhu PM, Galanski M, Clark RA, Sostman HD, Henschke CI (2000) Deep venous thrombosis: detection by using indirect CT venography. The Pulmonary Angiography-Indirect CT Venography Cooperative Group. Radiology 216 (3):744-751. https://doi.org/10.1148/radiology.216.3.r00se44744

  10. Szapiro D, Ghaye B, Willems V, Zhang L, Albert A, Dondelinger RF (2001) Evaluation of CT time-density curves of lower-limb veins. Invest Radiol 36 (3):164-169.

    Article  CAS  PubMed  Google Scholar 

  11. Garg K, Kemp JL, Russ PD, Baron AE (2001) Thromboembolic disease: variability of interobserver agreement in the interpretation of CT venography with CT pulmonary angiography. AJR Am J Roentgenol 176 (4):1043-1047. https://doi.org/10.2214/ajr.176.4.1761043

    Article  CAS  PubMed  Google Scholar 

  12. Bruce D, Loud PA, Klippenstein DL, Grossman ZD, Katz DS (2001) Combined CT venography and pulmonary angiography: how much venous enhancement is routinely obtained? AJR Am J Roentgenol 176 (5):1281-1285. https://doi.org/10.2214/ajr.176.5.1761281

    Article  CAS  PubMed  Google Scholar 

  13. Ciccotosto C, Goodman LR, Washington L, Quiroz FA (2002) Indirect CT venography following CT pulmonary angiography: spectrum of CT findings. J Thorac Imaging 17 (1):18-27.

    Article  PubMed  Google Scholar 

  14. Goodman LR, Stein PD, Beemath A, Sostman HD, Wakefield TW, Woodard PK, Yankelevitz DF (2007) CT venography for deep venous thrombosis: continuous images versus reformatted discontinuous images using PIOPED II data. AJR Am J Roentgenol 189 (2):409-412. https://doi.org/10.2214/AJR.07.2182

    Article  PubMed  Google Scholar 

  15. Hunsaker AR, Zou KH, Poh AC, Trotman-Dickenson B, Jacobson FL, Gill RR, Goldhaber SZ (2008) Routine pelvic and lower extremity CT venography in patients undergoing pulmonary CT angiography. AJR Am J Roentgenol 190 (2):322-326. https://doi.org/10.2214/AJR.07.2568

    Article  PubMed  Google Scholar 

  16. Park EA, Lee W, Lee MW, Choi SI, Jae HJ, Chung JW, Park JH (2007) Chronic-stage deep vein thrombosis of the lower extremities: indirect CT venographic findings. J Comput Assist Tomogr 31 (4):649-656. https://doi.org/10.1097/RCT.0b013e31803151d9

    Article  PubMed  Google Scholar 

  17. Yoshimura N, Hori Y, Horii Y, Takano T, Ishikawa H, Aoyama H (2012) Where is the most common site of DVT? Evaluation by CT venography. Japanese journal of radiology 30 (5):393-397. https://doi.org/10.1007/s11604-012-0059-6

    Article  PubMed  Google Scholar 

  18. Park CK, Choo KS, Jeon UB, Baik SK, Kim YW, Kim TU, Kim CW, Jeong YJ, Jeong DW, Lim SJ (2013) Image quality and radiation dose of 128-slice dual-source CT venography using low kilovoltage combined with high-pitch scanning and automatic tube current modulation. The international journal of cardiovascular imaging 29 Suppl 1:47-51. https://doi.org/10.1007/s10554-013-0252-4

    Article  PubMed  Google Scholar 

  19. Richman PB, Dominguez S, Kasper D, Chen F, Friese J, Wood J, Collins J, Kline JA (2006) Interobserver agreement for the diagnosis of venous thromboembolism on computed tomography chest angiography and indirect venography of the lower extremities in emergency department patients. Acad Emerg Med 13 (3):295-301. https://doi.org/10.1197/j.aem.2005.09.013

    Article  PubMed  Google Scholar 

  20. Yankelevitz DF, Gamsu G, Shah A, Rademaker J, Shaham D, Buckshee N, Cham MD, Henschke CI (2000) Optimization of combined CT pulmonary angiography with lower extremity CT venography. AJR Am J Roentgenol 174 (1):67-69. https://doi.org/10.2214/ajr.174.1.1740067

    Article  CAS  PubMed  Google Scholar 

  21. Obuchowski NA, Bullen JA (2018) Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Phys Med Biol 63 (7):07TR01. https://doi.org/10.1088/1361-6560/aab4b1

  22. Baldt MM, Zontsich T, Stumpflen A, Fleischmann D, Schneider B, Minar E, Mostbeck GH (1996) Deep venous thrombosis of the lower extremity: efficacy of spiral CT venography compared with conventional venography in diagnosis. Radiology 200 (2):423-428. https://doi.org/10.1148/radiology.200.2.8685336

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoyo Yano.

Ethics declarations

Ethical approval

IRB statement: The Institutional Review Board of Washington University School of Medicine approved this study (IRB # 201801002).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mityul, M., Kim, D.J., Salter, A. et al. CT IVC venogram: normalized quantitative criteria for patency and thrombosis. Abdom Radiol 44, 2262–2267 (2019). https://doi.org/10.1007/s00261-019-01940-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-01940-5

Keywords

Navigation