Skip to main content

Advertisement

Log in

LI-RADS technical requirements for CT, MRI, and contrast-enhanced ultrasound

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

An Author Correction to this article was published on 02 November 2017

This article has been updated

Abstract

Accurate detection and characterization of liver observations to enable HCC diagnosis and staging using LI-RADS requires a technically adequate imaging exam. To help achieve this objective, LI-RADS has proposed technical requirements for CT, MR, and contrast-enhanced ultrasound of liver. This article reviews the technical requirements for liver imaging, including the description of minimum acceptable technical standards, such as the scanner hardware requirements, recommended dynamic imaging phases, and common technical challenges of liver imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 02 November 2017

    The original version of this article unfortunately contained mistakes in the author list. The following author names were listed without middle initial. The correct author names are: Avinash R Kambadakone, Rajan T. Gupta, Thomas A. Hope, Kathryn J. Fowler, Alexander R. Guimaraes, Dushyant V. Sahani, Frank H. Miller. The original article was corrected.

References

  1. Wald C, Russo MW, Heimbach JK, et al. (2013) New OPTN/UNOS policy for liver transplant allocation: standardization of liver imaging, diagnosis, classification, and reporting of hepatocellular carcinoma. Radiology 266(2):376–382

    Article  PubMed  Google Scholar 

  2. Bruix J, Sherman M (2011) American Association for the Study of Liver D. Management of hepatocellular carcinoma: an update. Hepatology 53(3):1020–1022

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kudo M, Matsui O, Izumi N, et al. (2014) JSH consensus-based clinical practice guidelines for the management of hepatocellular carcinoma: 2014 Update by the Liver Cancer Study Group of Japan. Liver Cancer. 3(3–4):458–468

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee JM, Park JW, Choi BI (2014) 2014 KLCSG-NCC Korea Practice Guidelines for the management of hepatocellular carcinoma: HCC diagnostic algorithm. Dig Dis 32(6):764–777

    Article  PubMed  Google Scholar 

  5. Omata M, Lesmana LA, Tateishi R, et al. (2010) Asian Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma. Hepatol Int 4(2):439–474

    Article  PubMed  PubMed Central  Google Scholar 

  6. European Association For The Study Of The (2012) L, European Organisation For R, Treatment Of C. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56(4):908–943

    Article  Google Scholar 

  7. Baron RL, Oliver JH, Dodd GD, et al. (1996) Hepatocellular carcinoma: evaluation with biphasic, contrast-enhanced, helical CT. Radiology 199(2):505–511

    Article  CAS  PubMed  Google Scholar 

  8. Lim JH, Kim CK, Lee WJ, et al. (2000) Detection of hepatocellular carcinomas and dysplastic nodules in cirrhotic livers: accuracy of helical CT in transplant patients. AJR Am J Roentgenol 175(3):693–698

    Article  CAS  PubMed  Google Scholar 

  9. Kawata S, Murakami T, Kim T, et al. (2002) Multidetector CT: diagnostic impact of slice thickness on detection of hypervascular hepatocellular carcinoma. AJR Am J Roentgenol 179(1):61–66

    Article  PubMed  Google Scholar 

  10. Laghi A, Iannaccone R, Rossi P, et al. (2003) Hepatocellular carcinoma: detection with triple-phase multi-detector row helical CT in patients with chronic hepatitis. Radiology. 226(2):543–549

    Article  PubMed  Google Scholar 

  11. Murakami T, Kim T, Takamura M, et al. (2001) Hypervascular hepatocellular carcinoma: detection with double arterial phase multi-detector row helical CT. Radiology 218(3):763–767

    Article  CAS  PubMed  Google Scholar 

  12. Maetani YS, Ueda M, Haga H, et al. (2008) Hepatocellular carcinoma in patients undergoing living-donor liver transplantation. Accuracy of multidetector computed tomography by viewing images on digital monitors. Intervirology 51(Suppl 1):46–51

    Article  PubMed  Google Scholar 

  13. ACR–SPR practice parameter for the performance of computed tomography (CT) of the abdomen and computed tomography (CT) of the pelvis [Internet]. https://www.acr.org/~/media/ACR/Documents/PGTS/guidelines/CT_Abdomen_Pelvis.pdf

  14. Weg N, Scheer MR, Gabor MP (1998) Liver lesions: improved detection with dual-detector-array CT and routine 2.5-mm thin collimation. Radiology. 209(2):417–426

    Article  CAS  PubMed  Google Scholar 

  15. Abdelmoumene A, Chevallier P, Chalaron M, et al. (2005) Detection of liver metastases under 2 cm: comparison of different acquisition protocols in four row multidetector-CT (MDCT). Eur Radiol 15(9):1881–1887

    Article  PubMed  Google Scholar 

  16. Basilico R, Filippone A, Ricciardi M, Iezzi A, Bonomo L (eds) (2000) Impact of slice thickness on the detection of liver lesions with multislice CT2000 2000/11//undefined. USA: Radiological Soc North Amer

    Google Scholar 

  17. Haider MA, Amitai MM, Rappaport DC, et al. (2002) Multi-detector row helical CT in preoperative assessment of small (≤ 1.5 cm) liver metastases: is thinner collimation better? Radiology 225(1):137–142

    Article  PubMed  Google Scholar 

  18. Kopka L, Rodenwaldt J, Hamm BK (eds) (2000) Biphasic multislice helical CT of the liver: intraindividual comparison of different slice thickness for the detection and characterization of focal liver lesion. Easton: Radiological Soc North Amer

    Google Scholar 

  19. Smith JT, Hawkins RM, Guthrie JA, et al. (2010) Effect of slice thickness on liver lesion detection and characterisation by multidetector CT. J Med Imaging Radiat Oncol 54(3):188–193

    Article  CAS  PubMed  Google Scholar 

  20. Hwang SH, Yu J-S, Chung J-J, Kim JH, Kim KW (2011) Diagnosing small hepatic cysts on multidetector CT: an additional merit of thinner coronal reformations. Korean J Radiol 12(3):341–350

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jaffe TA, Nelson RC, Johnson GA, et al. (2006) Optimization of multiplanar reformations from isotropic data sets acquired with 16-detector row helical CT scanner. Radiology 238(1):292–299

    Article  PubMed  Google Scholar 

  22. Marin D, Catalano C, De Filippis G, et al. (2009) Detection of hepatocellular carcinoma in patients with cirrhosis: added value of coronal reformations from isotropic voxels with 64-MDCT. AJR Am J Roentgenol 192(1):180–187

    Article  PubMed  Google Scholar 

  23. Sandrasegaran K, Rydberg J, Tann M, et al. (2007) Benefits of routine use of coronal and sagittal reformations in multi-slice CT examination of the abdomen and pelvis. Clin Radiol 62(4):340–347

    Article  CAS  PubMed  Google Scholar 

  24. Chang KJ, Kamel IR, Macura KJ, Bluemke DA (2008) 3.0-T MR imaging of the abdomen: comparison with 1.5 T1. RadioGraphics 28(7):1983–1998

    Article  PubMed  Google Scholar 

  25. Girometti R (2015) 3.0 Tesla magnetic resonance imaging: a new standard in liver imaging? World J Hepatol 7(15):1894

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schindera ST, Merkle EM, Dale BM, Delong DM, Nelson RC (2006) Abdominal magnetic resonance imaging at 3.0 T what is the ultimate gain in signal-to-noise ratio? Acad Radiol 13(10):1236–1243

    Article  PubMed  Google Scholar 

  27. Soher BJ, Dale BM, Merkle EM (2007) A review of MR physics: 3 T versus 1.5 T. Magn Reson Imaging Clin N Am 15(3):277–290

    Article  PubMed  Google Scholar 

  28. Kukuk GM, Gieseke J, Weber S, et al. (2011) Focal liver lesions at 3.0 T: lesion detectability and image quality with T2-weighted imaging by using conventional and dual-source parallel radiofrequency transmission. Radiology 259(2):421–428

    Article  PubMed  Google Scholar 

  29. Lee MH, Kim YK, Park MJ, et al. (2013) Gadoxetic acid-enhanced fat suppressed three-dimensional T1-weighted MRI using a multiecho Dixon technique at 3 tesla: emphasis on image quality and hepatocellular carcinoma detection. J Magn Reson Imaging 38(2):401–410

    Article  PubMed  Google Scholar 

  30. Ramalho M, Herédia V, Tsurusaki M, Altun E, Semelka RC (2009) Quantitative and qualitative comparison of 1.5 and 3.0 Tesla MRI in patients with chronic liver diseases. J Magn Reson Imaging 29(4):869–879

    Article  PubMed  Google Scholar 

  31. Tsurusaki M, Semelka RC, Zapparoli M, et al. (2009) Quantitative and qualitative comparison of 3.0 T and 1.5 T MR imaging of the liver in patients with diffuse parenchymal liver disease. Eur J Radiol 72(2):314–320

    Article  PubMed  Google Scholar 

  32. Zapparoli M, Semelka RC, Altun E, et al. (2008) 3.0-T MRI evaluation of patients with chronic liver diseases: initial observations. Magn Reson Imaging 26(5):650–660

    Article  PubMed  Google Scholar 

  33. Reinig JW, Dwyer AJ, Miller DL, et al. (1989) Liver metastases: detection with MR imaging at 0.5 and 1.5 T. Radiology 170(1):149–153

    Article  CAS  PubMed  Google Scholar 

  34. Semelka RC, Simm FC, Recht M, et al. (1991) T1-weighted sequences for MR imaging of the liver: comparison of three techniques for single-breath, whole-volume acquisition at 1.0 and 1.5 T. Radiology 180(3):629–635

    Article  CAS  PubMed  Google Scholar 

  35. Campeau NG, Johnson CD, Felmlee JP, et al. (1995) MR imaging of the abdomen with a phased-array multicoil: prospective clinical evaluation. Radiology 195(3):769–776

    Article  CAS  PubMed  Google Scholar 

  36. Low RN (2007) Abdominal MRI advances in the detection of liver tumours and characterisation. Lancet Oncol 8(6):525–535

    Article  PubMed  Google Scholar 

  37. Schwartz LH, Panicek DM, Thomson E, et al. (1997) Comparison of phased-array and body coils for MR imaging of liver. Clin Radiol 52(10):745–749

    Article  CAS  PubMed  Google Scholar 

  38. Deshmane A, Gulani V, Griswold MA, Seiberlich N (2012) Parallel MR imaging. J Magn Reson Imaging 36(1):55–72

    Article  PubMed  PubMed Central  Google Scholar 

  39. Keogan MT, Edelman RR (2001) Technologic advances in abdominal MR imaging. Radiology 220(2):310–320

    Article  CAS  PubMed  Google Scholar 

  40. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 42(5):952–962

    Article  CAS  PubMed  Google Scholar 

  41. Hardy CJ, Giaquinto RO, Piel JE, et al. (2008) 128-channel body MRI with a flexible high-density receiver-coil array. J Magn Reson Imaging 28(5):1219–1225

    Article  PubMed  Google Scholar 

  42. Keil B, Wald LL (2013) Massively parallel MRI detector arrays. J Magn Reson 229:75–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang T, Grafendorfer T, Cheng JY, et al. (2016) A semiflexible 64-channel receive-only phased array for pediatric body MRI at 3T. Magn Reson Med 76(3):1015–1021

    Article  PubMed  Google Scholar 

  44. ACR–SAR–SPR practice parameter for the performance of magnetic resonance imaging (MRI) of the liver [Internet]. https://www.acr.org/~/media/ACR/Documents/PGTS/guidelines/MRI_Liver.pdf

  45. Choi BI, Cho JM, Han JK, Choi DS, Han MC (1996) Spiral CT for the detection of hepatocellular carcinomas:relative value of arterial- and late-phase scanning. Abdom Imaging 21(5):440–444

    Article  CAS  PubMed  Google Scholar 

  46. Furlan A, Marin D, Vanzulli A, et al. (1001) Hepatocellular carcinoma in cirrhotic patients at multidetector CT: hepatic venous phase versus delayed phase for the detection of tumour washout. Br J Radiol 2011(84):403–412

    Google Scholar 

  47. Iannaccone R, Laghi A, Catalano C, et al. (2005) Hepatocellular carcinoma: role of unenhanced and delayed phase multi-detector row helical CT in patients with cirrhosis. Radiology 234(2):460–467

    Article  PubMed  Google Scholar 

  48. Kim SK, Lim JH, Lee WJ, et al. (2002) Detection of hepatocellular carcinoma: comparison of dynamic three-phase computed tomography images and four-phase computed tomography images using multidetector row helical computed tomography. J Comput Assist Tomogr 26(5):691–698

    Article  PubMed  Google Scholar 

  49. Kim T, Murakami T, Hori M, et al. (2002) Small hypervascular hepatocellular carcinoma revealed by double arterial phase CT performed with single breath-hold scanning and automatic bolus tracking. AJR Am J Roentgenol 178(4):899–904

    Article  PubMed  Google Scholar 

  50. Kim T, Murakami T, Takahashi S, et al. (1999) Optimal phases of dynamic CT for detecting hepatocellular carcinoma: evaluation of unenhanced and triple-phase images. Abdom Imaging 24(5):473–480

    Article  CAS  PubMed  Google Scholar 

  51. Mitsuzaki K, Yamashita Y, Ogata I, et al. (1996) Multiple-phase helical CT of the liver for detecting small hepatomas in patients with liver cirrhosis: contrast-injection protocol and optimal timing. AJR Am J Roentgenol 167(3):753–757

    Article  CAS  PubMed  Google Scholar 

  52. Monzawa S, Ichikawa T, Nakajima H, et al. (2007) Dynamic CT for detecting small hepatocellular carcinoma: usefulness of delayed phase imaging. AJR Am J Roentgenol 188(1):147–153

    Article  PubMed  Google Scholar 

  53. Zhao H, Zhou K-R, Yan F-H (2003) Role of multiphase scans by multirow-detector helical CT in detecting small hepatocellular carcinoma. World J Gastroenterol 9(10):2198–2201

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rengo M, Caruso D, De Cecco CN, et al. (2012) High concentration (400 mgI/mL) versus low concentration (320 mgI/mL) iodinated contrast media in multi detector computed tomography of the liver: a randomized, single centre, non-inferiority study. Eur J Radiol 81(11):3096–3101

    Article  PubMed  Google Scholar 

  55. Hänninen EL, Vogl TJ, Felfe R, et al. (2000) Detection of focal liver lesions at biphasic spiral CT: randomized double-blind study of the effect of iodine concentration in contrast materials. Radiology 216(2):403–409

    Article  PubMed  Google Scholar 

  56. Yagyu Y, Awai K, Inoue M, et al. (2005) MDCT of hypervascular hepatocellular carcinomas: a prospective study using contrast materials with different iodine concentrations. AJR Am J Roentgenol 184(5):1535–1540

    Article  PubMed  Google Scholar 

  57. Awai K, Kanematsu M, Kim T, et al. (2016) The optimal body size index with which to determine iodine dose for hepatic dynamic CT: a prospective multicenter study. Radiology 278(3):773–781

    Article  PubMed  Google Scholar 

  58. Brink JA, Heiken JP, Forman HP, et al. (1995) Hepatic spiral CT: reduction of dose of intravenous contrast material. Radiology 197(1):83–88

    Article  CAS  PubMed  Google Scholar 

  59. Yamashita Y, Komohara Y, Takahashi M, et al. (2000) Abdominal helical CT: evaluation of optimal doses of intravenous contrast material–a prospective randomized study. Radiology 216(3):718–723

    Article  CAS  PubMed  Google Scholar 

  60. Fujigai T, Kumano S, Okada M, et al. (2012) Optimal dose of contrast medium for depiction of hypervascular HCC on dynamic MDCT. Eur J Radiol 81(11):2978–2983

    Article  PubMed  Google Scholar 

  61. Heiken JP, Brink JA, Gaines MV, et al. (1995) Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 195(2):353–357

    Article  CAS  PubMed  Google Scholar 

  62. Ichikawa T, Motosugi U, Morisaka H, et al. (2012) Optimal iodine dose for 3-dimensional multidetector-row CT angiography of the liver. Eur J Radiol 81(9):2450–2455

    Article  PubMed  Google Scholar 

  63. Ichikawa T, Okada M, Kondo H, et al. (2013) Recommended iodine dose for multiphasic contrast-enhanced mutidetector-row computed tomography imaging of liver for assessing hypervascular hepatocellular carcinoma: multicenter prospective study in 77 general hospitals in Japan. Acad Radiol 20(9):1130–1136

    Article  PubMed  Google Scholar 

  64. Yanaga Y, Awai K, Nakaura T, et al. (2008) Optimal contrast dose for depiction of hypervascular hepatocellular carcinoma at dynamic CT using 64-MDCT. AJR Am J Roentgenol 190(4):1003–1009

    Article  PubMed  Google Scholar 

  65. Furuta A, Ito K, Fujita T, et al. (2004) Hepatic enhancement in multiphasic contrast-enhanced MDCT: comparison of high- and low-iodine-concentration contrast medium in same patients with chronic liver disease. AJR Am J Roentgenol 183(1):157–162

    Article  PubMed  Google Scholar 

  66. Vignaux O, Legmann P, Coste J, Hoeffel C, Bonnin A (1999) Cirrhotic liver enhancement on dual-phase helical CT: comparison with noncirrhotic livers in 146 patients. AJR Am J Roentgenol 173(5):1193–1197

    Article  CAS  PubMed  Google Scholar 

  67. Awai K, Takada K, Onishi H, Hori S (2002) Aortic and hepatic enhancement and tumor-to-liver contrast: analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology 224(3):757–763

    Article  PubMed  Google Scholar 

  68. Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic peak enhancement at CT: effect of contrast medium injection rate–pharmacokinetic analysis and experimental porcine model. Radiology 206(2):455–464

    Article  CAS  PubMed  Google Scholar 

  69. Erturk SM, Ichikawa T, Sou H, et al. (2008) Effect of duration of contrast material injection on peak enhancement times and values of the aorta, main portal vein, and liver at dynamic MDCT with the dose of contrast medium tailored to patient weight. Clin Radiol 63(3):263–271

    Article  CAS  PubMed  Google Scholar 

  70. Ichikawa T, Erturk SM, Araki T (2006) Multiphasic contrast-enhanced multidetector-row CT of liver: contrast-enhancement theory and practical scan protocol with a combination of fixed injection duration and patients’ body-weight-tailored dose of contrast material. Eur J Radiol 58(2):165–176

    Article  PubMed  Google Scholar 

  71. Itoh S, Ikeda M, Achiwa M, et al. (2004) Late-arterial and portal-venous phase imaging of the liver with a multislice CT scanner in patients without circulatory disturbances: automatic bolus tracking or empirical scan delay? Eur Radiol 14(9):1665–1673

    Article  PubMed  Google Scholar 

  72. Schima W, Hammerstingl R, Catalano C, et al. (2006) Quadruple-phase MDCT of the liver in patients with suspected hepatocellular carcinoma: effect of contrast material flow rate. AJR Am J Roentgenol 186(6):1571–1579

    Article  PubMed  Google Scholar 

  73. Awai K, Hiraishi K, Hori S (2004) Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight. Radiology 230(1):142–150

    Article  PubMed  Google Scholar 

  74. Awai K, Inoue M, Yagyu Y, et al. (2004) Moderate versus high concentration of contrast material for aortic and hepatic enhancement and tumor-to-liver contrast at multi-detector row CT. Radiology 233(3):682–688

    Article  PubMed  Google Scholar 

  75. Dorio PJ, Lee FT, Henseler KP, et al. (2003) Using a saline chaser to decrease contrast media in abdominal CT. AJR Am J Roentgenol 180(4):929–934

    Article  PubMed  Google Scholar 

  76. Schoellnast H, Tillich M, Deutschmann HA, et al. (2003) Abdominal multidetector row computed tomography: reduction of cost and contrast material dose using saline flush. J Comput Assist Tomogr 27(6):847–853

    Article  PubMed  Google Scholar 

  77. Schoellnast H, Tillich M, Deutschmann HA, et al. (2004) Improvement of parenchymal and vascular enhancement using saline flush and power injection for multiple-detector-row abdominal CT. Eur Radiol 14(4):659–664

    Article  PubMed  Google Scholar 

  78. Cortis K, Liotta R, Miraglia R, et al. (2016) Incorporating the hepatobiliary phase of gadobenate dimeglumine-enhanced MRI in the diagnosis of hepatocellular carcinoma: increasing the sensitivity without compromising specificity. Acta Radiol 57(8):923–931

    Article  PubMed  Google Scholar 

  79. Hope TA, Fowler KJ, Sirlin CB, et al. (2014) Hepatobiliary agents and their role in LI-RADS. Abdom Imaging 40(3):613–625

    Article  Google Scholar 

  80. Kim YK, Lee JM, Kim CS (2004) Gadobenate dimeglumine-enhanced liver MR imaging: value of dynamic and delayed imaging for the characterization and detection of focal liver lesions. Eur Radiol 14(1):5–13

    Article  PubMed  Google Scholar 

  81. Pirovano G, Vanzulli A, Marti-Bonmati L, et al. (2000) Evaluation of the accuracy of gadobenate dimeglumine-enhanced MR imaging in the detection and characterization of focal liver lesions. Am J Roentgenol 175(4):1111–1120

    Article  CAS  Google Scholar 

  82. Ringe KI, Husarik DB, Sirlin CB, Merkle EM (2010) Gadoxetate disodium-enhanced MRI of the liver: part 1, protocol optimization and lesion appearance in the noncirrhotic liver. AJR Am J Roentgenol 195(1):13–28

    Article  PubMed  Google Scholar 

  83. Vogl TJ, Kümmel S, Hammerstingl R, et al. (1996) Liver tumors: comparison of MR imaging with Gd-EOB-DTPA and Gd-DTPA. Radiology 200(1):59–67

    Article  CAS  PubMed  Google Scholar 

  84. Carlos RC, Kim HM, Hussain HK (2003) Developing a prediction rule to assess hepatic malignancy in patients with cirrhosis. AJR Am J Roentgenol 180(4):893–900

    Article  PubMed  Google Scholar 

  85. Ito K, Honjo K, Fujita T, et al. (1996) Hepatic parenchymal hyperperfusion abnormalities detected with multisection dynamic MR imaging: appearance and interpretation. J Magn Reson Imaging 6(6):861–867

    Article  CAS  PubMed  Google Scholar 

  86. Khan AS, Hussain HK, Johnson TD, et al. (2010) Value of delayed hypointensity and delayed enhancing rim in magnetic resonance imaging diagnosis of small hepatocellular carcinoma in the cirrhotic liver. J Magn Reson Imaging 32(2):360–366

    Article  PubMed  Google Scholar 

  87. Kuwatsuru R, Kadoya M, Ohtomo K, et al. (2001) Comparison of gadobenate dimeglumine with gadopentetate dimeglumine for magnetic resonance imaging of liver tumors. Invest Radiol 36(11):632–641

    Article  CAS  PubMed  Google Scholar 

  88. Marrero JA, Hussain HK, Nghiem HV, et al. (2005) Improving the prediction of hepatocellular carcinoma in cirrhotic patients with an arterially-enhancing liver mass. Liver Transpl 11(3):281–289

    Article  PubMed  Google Scholar 

  89. Semelka RC, Helmberger TK (2001) Contrast agents for MR imaging of the liver. Radiology 218(1):27–38

    Article  CAS  PubMed  Google Scholar 

  90. Willatt JM, Hussain HK, Adusumilli S, Marrero JA (2008) MR imaging of hepatocellular carcinoma in the cirrhotic liver: challenges and controversies. Radiology 247(2):311–330

    Article  PubMed  Google Scholar 

  91. H-m Zhang (2006) Evaluation of Gd-BOPTA and Gd-DTPA in contrast-enhanced MR imaging of the liver. Zhonghua Zhong Liu Za Zhi 28(2):111–115

    Google Scholar 

  92. Francis IR, Cohan RH, McNulty NJ, et al. (2003) Multidetector CT of the liver and hepatic neoplasms: effect of multiphasic imaging on tumor conspicuity and vascular enhancement. AJR Am J Roentgenol 180(5):1217–1224

    Article  PubMed  Google Scholar 

  93. Sultana S, Awai K, Nakayama Y, et al. (2007) Hypervascular hepatocellular carcinomas: bolus tracking with a 40-detector CT scanner to time arterial phase imaging. Radiology 243(1):140–147

    Article  PubMed  Google Scholar 

  94. Sharma P, Kalb B, Kitajima HD, et al. (2011) Optimization of single injection liver arterial phase gadolinium enhanced MRI using bolus track real-time imaging. J Magn Reson Imaging 33(1):110–118

    Article  PubMed  Google Scholar 

  95. Mitchell DG, Palazzo J, Hann HW, et al. (1991) Hepatocellular tumors with high signal on T1-weighted MR images: chemical shift MR imaging and histologic correlation. J Comput Assist Tomogr 15(5):762–769

    Article  CAS  PubMed  Google Scholar 

  96. Jang H-J, Kim TK, Khalili K, et al. (2013) Characterization of 1-to 2-cm liver nodules detected on hcc surveillance ultrasound according to the criteria of the American Association for the Study of Liver Disease: is quadriphasic CT necessary? AJR Am J Roentgenol 201(2):314–321

    Article  PubMed  Google Scholar 

  97. Luke FE, Allen BC, Moshiri ST, et al. (2013) Multiphase multi-detector row computed tomography in the setting of chronic liver disease and orthotopic liver transplantation: can a series be eliminated in order to reduce radiation dose? J Comput Assist Tomogr 37(3):408–414

    Article  PubMed  Google Scholar 

  98. An C, Park M-S, Kim D, et al. (2013) Added value of subtraction imaging in detecting arterial enhancement in small (< 3 cm) hepatic nodules on dynamic contrast-enhanced MRI in patients at high risk of hepatocellular carcinoma. Eur Radiol 23(4):924–930

    Article  PubMed  Google Scholar 

  99. Yu JS, Kim YH, Rofsky NM (2005) Dynamic subtraction magnetic resonance imaging of cirrhotic liver: assessment of high signal intensity lesions on nonenhanced T1-weighted images. J Comput Assist Tomogr 29(1):51–58

    Article  PubMed  Google Scholar 

  100. Bargellini I, Vignali C, Cioni R, et al. (2010) Hepatocellular carcinoma: ct for tumor response after transarterial chemoembolization in patients exceeding milan criteria—selection parameter for liver transplantation. Radiology 255(1):289–300

    Article  PubMed  Google Scholar 

  101. Bajpai S, Kambadakone A, Guimaraes AR, et al. (2015) Image-guided Treatment in the hepatobiliary system: role of imaging in treatment planning and posttreatment evaluation. Radiographics 35(5):1393–1418

    Article  PubMed  Google Scholar 

  102. Ichikawa T, Kitamura T, Nakajima H, et al. (2002) Hypervascular hepatocellular carcinoma: can double arterial phase imaging with multidetector CT improve tumor depiction in the cirrhotic liver? AJR Am J Roentgenol 179(3):751–758

    Article  PubMed  Google Scholar 

  103. Mori K, Yoshioka H, Takahashi N, et al. (2005) Triple arterial phase dynamic MRI with sensitivity encoding for hypervascular hepatocellular carcinoma: comparison of the diagnostic accuracy among the early, middle, late, and whole triple arterial phase imaging. AJR Am J Roentgenol 184(1):63–69

    Article  PubMed  Google Scholar 

  104. Noguchi Y, Murakami T, Kim T, et al. (2002) Detection of hypervascular hepatocellular carcinoma by dynamic magnetic resonance imaging with double-echo chemical shift in-phase and opposed-phase gradient echo technique: comparison with dynamic helical computed tomography imaging with double arterial phase. J Comput Assist Tomogr 26(6):981–987

    Article  PubMed  Google Scholar 

  105. Oi H, Murakami T, Kim T, et al. (1996) Dynamic MR imaging and early-phase helical CT for detecting small intrahepatic metastases of hepatocellular carcinoma. AJR Am J Roentgenol 166(2):369–374

    Article  CAS  PubMed  Google Scholar 

  106. Shinmura R, Matsui O, Kobayashi S, et al. (2005) Cirrhotic nodules: association between MR imaging signal intensity and intranodular blood supply. Radiology 237(2):512–519

    Article  PubMed  Google Scholar 

  107. Yamashita Y, Hatanaka Y, Yamamoto H, et al. (1994) Differential diagnosis of focal liver lesions: role of spin-echo and contrast-enhanced dynamic MR imaging. Radiology 193(1):59–65

    Article  CAS  PubMed  Google Scholar 

  108. Yamashita Y, Mitsuzaki K, Yi T, et al. (1996) Small hepatocellular carcinoma in patients with chronic liver damage: prospective comparison of detection with dynamic MR imaging and helical CT of the whole liver. Radiology 200(1):79–84

    Article  CAS  PubMed  Google Scholar 

  109. Yoshioka H, Sato J, Takahashi N, et al. (2004) Dual double arterial phase dynamic MR imaging with sensitivity encoding (SENSE): which is better for diagnosing hypervascular hepatocellular carcinomas, in-phase or opposed-phase imaging? Magn Reson Imaging 22(3):361–367

    Article  PubMed  Google Scholar 

  110. Yoshioka H, Takahashi N, Yamaguchi M, et al. (2002) Double arterial phase dynamic MRI with sensitivity encoding (SENSE) for hypervascular hepatocellular carcinomas. J Magn Reson Imaging 16(3):259–266

    Article  PubMed  Google Scholar 

  111. Goshima S, Kanematsu M, Kondo H, et al. (2006) MDCT of the liver and hypervascular hepatocellular carcinomas: optimizing scan delays for bolus-tracking techniques of hepatic arterial and portal venous phases. AJR Am J Roentgenol 187(1):W25–W32

    Article  PubMed  Google Scholar 

  112. Huang J-S, Pan H-B, Chou C-P, et al. (2008) Optimizing scanning phases in detecting small (< 2 cm) hepatocellular carcinoma: whole-liver dynamic study with multidetector row CT. J Comput Assist Tomogr 32(3):341–346

    Article  PubMed  Google Scholar 

  113. Kagawa Y, Okada M, Yagyu Y, et al. (2013) Optimal scan timing of hepatic arterial-phase imaging of hypervascular hepatocellular carcinoma determined by multiphasic fast CT imaging technique. Acta Radiol 54(8):843–850

    Article  PubMed  Google Scholar 

  114. Kim M-J, Choi JY, Lim JS, et al. (2006) Optimal scan window for detection of hypervascular hepatocellular carcinomas during MDCT examination. AJR Am J Roentgenol 187(1):198–206

    Article  PubMed  Google Scholar 

  115. Adibi A, Shahbazi A (2014) Automatic bolus tracking versus fixed time-delay technique in biphasic multidetector computed tomography of the abdomen. Iran J Radiol 11(1):4617

    Google Scholar 

  116. Besa C, Kakite S, Cooper N, Facciuto M, Taouli B (2015) Comparison of gadoxetic acid and gadopentetate dimeglumine-enhanced MRI for HCC detection: prospective crossover study at 3 T. Acta Radiol Open 4(2):2047981614561285

    PubMed  PubMed Central  Google Scholar 

  117. Zech CJ, Vos B, Nordell A, et al. (2009) Vascular enhancement in early dynamic liver MR imaging in an animal model: comparison of two injection regimen and two different doses Gd-EOB-DTPA (gadoxetic acid) with standard Gd-DTPA. Invest Radiol 44(6):305–310

    Article  CAS  PubMed  Google Scholar 

  118. Davenport MS, Viglianti BL, Al-Hawary MM, et al. (2013) Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality. Radiology 266(2):452–461

    Article  PubMed  Google Scholar 

  119. Motosugi U, Ichikawa T, Sou H, et al. (2009) Dilution method of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). J Magn Reson Imaging 30(4):849–854

    Article  PubMed  Google Scholar 

  120. Hope TA, Saranathan M, Petkovska I, et al. (2013) Improvement of gadoxetate arterial phase capture with a high spatio-temporal resolution multiphase three-dimensional SPGR-Dixon sequence. J Magn Reson Imaging 38(4):938–945

    Article  PubMed  Google Scholar 

  121. Yoon JH, Lee JM, Yu MH, Kim EJ, Han JK (2016) Triple arterial phase MR imaging with gadoxetic acid using a combination of contrast enhanced time robust angiography, keyhole, and viewsharing techniques and two-dimensional parallel imaging in comparison with conventional single arterial phase. Korean J Radiol 17(4):522–532

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ikram NS, Yee J, Weinstein S, et al. (2017) Multiple arterial phase MRI of arterial hypervascular hepatic lesions: improved arterial phase capture and lesion enhancement. Abdom Radiol 42(3):870–876

    Article  Google Scholar 

  123. Pietryga JA, Burke LMB, Marin D, Jaffe TA, Bashir MR (2014) Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition. Radiology 271(2):426–434

    Article  PubMed  Google Scholar 

  124. Krinsky GA, Lee VS (2000) MR imaging of cirrhotic nodules. Abdom Imaging 25(5):471–482

    Article  CAS  PubMed  Google Scholar 

  125. Peterson MS, Baron RL, Murakami T (1996) Hepatic malignancies: usefulness of acquisition of multiple arterial and portal venous phase images at dynamic gadolinium-enhanced MR imaging. Radiology 201(2):337–345

    Article  CAS  PubMed  Google Scholar 

  126. Foley WD, Mallisee TA, Hohenwalter MD, et al. (2000) Multiphase hepatic CT with a multirow detector CT scanner. AJR Am J Roentgenol 175(3):679–685

    Article  CAS  PubMed  Google Scholar 

  127. Liu YI, Kamaya A, Jeffrey RB, Shin LK (2012) Multidetector computed tomography triphasic evaluation of the liver before transplantation: importance of equilibrium phase washout and morphology for characterizing hypervascular lesions. J Comput Assist Tomogr 36(2):213–219

    Article  PubMed  Google Scholar 

  128. Kormano M, Dean PB (1976) Extravascular contrast material: the major component of contrast enhancement. Radiology 121(2):379–382

    Article  CAS  PubMed  Google Scholar 

  129. Lim JH, Choi D, Kim SH, et al. (2002) Detection of hepatocellular carcinoma: value of adding delayed phase imaging to dual-phase helical CT. AJR Am J Roentgenol 179(1):67–73

    Article  PubMed  Google Scholar 

  130. Niendorf E, Spilseth B, Wang X, Taylor A (2015) Contrast enhanced MRI in the diagnosis of HCC. Diagnostics 5(3):383–398

    Article  PubMed  PubMed Central  Google Scholar 

  131. Karahan OI, Yikilmaz A, Isin S, Orhan S (2003) Characterization of hepatocellular carcinomas with triphasic CT and correlation with histopathologic findings. Acta Radiol 44(6):566–571

    Article  CAS  PubMed  Google Scholar 

  132. Liu YI, Shin LK, Jeffrey RB, Kamaya A (2013) Quantitatively defining washout in hepatocellular carcinoma. AJR Am J Roentgenol 200(1):84–89

    Article  PubMed  Google Scholar 

  133. Agnello F, Dioguardi Burgio M, Picone D, et al. (2016) Magnetic resonance imaging of the cirrhotic liver in the era of gadoxetic acid. World J Gastroenterol 22(1):103–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Van Montfoort JE, Stieger B, Meijer DKF, et al. (1999) Hepatic uptake of the magnetic resonance imaging contrast agent gadoxetate by the organic anion transporting polypeptide Oatp1. J Pharmacol Exp Therap 290(1):153–157

    Google Scholar 

  135. Lee NK, Kim S, Kim GH, et al. (2012) Significance of the “Delayed hyperintense portal vein sign” in the hepatobiliary phase MRI obtained with Gd-EOB-DTPA. J Magn Reson Imaging 36(3):678–685

    Article  PubMed  Google Scholar 

  136. Fu G-L, Du Y, Zee C-S, et al. (2012) Gadobenate dimeglumine-enhanced liver magnetic resonance imaging: value of hepatobiliary phase for the detection of focal liver lesions. J Comput Assist Tomogr 36(1):14–19

    Article  PubMed  Google Scholar 

  137. Van Beers BE, Pastor CM, Hussain HK (2012) Primovist, Eovist: what to expect? J Hepatol 57(2):421–429

    Article  PubMed  Google Scholar 

  138. EOVIST (Bayer HealthCare Pharmaceuticals Inc.): FDA Package Insert, Page 5. MedLibraryorg.

  139. Kirchin MA, Pirovano GP, Spinazzi A (1998) Gadobenate dimeglumine (Gd-BOPTA). An overview. Invest Radiol 33(11):798–809

    Article  CAS  PubMed  Google Scholar 

  140. Malone D, Zech CJ, Ayuso C, et al. (2008) Magnetic resonance imaging of the liver: consensus statement from the 1st International Primovist User Meeting. Eur Radiol Suppl 18(4):849–864

    Article  Google Scholar 

  141. Tschirch FTC, Struwe A, Petrowsky H, et al. (2008) Contrast-enhanced MR cholangiography with Gd-EOB-DTPA in patients with liver cirrhosis: visualization of the biliary ducts in comparison with patients with normal liver parenchyma. Eur Radiol 18(8):1577–1586

    Article  PubMed  Google Scholar 

  142. Cruite I, Schroeder M, Merkle EM, Sirlin CB (2010) Gadoxetate disodium-enhanced MRI of the liver: part 2, protocol optimization and lesion appearance in the cirrhotic liver. AJR Am J Roentgenol 195(1):29–41

    Article  PubMed  Google Scholar 

  143. Kobi M, Paroder V, Flusberg M, Rozenblit AM, Chernyak V (2017) Limitations of GD-EOB-DTPA-enhanced MRI: can clinical parameters predict suboptimal hepatobiliary phase? Clin Radiol 72(1):55–62

    Article  CAS  PubMed  Google Scholar 

  144. Bashir MR, Merkle EM (2011) Improved liver lesion conspicuity by increasing the flip angle during hepatocyte phase MR imaging. Eur Radiol 21(2):291–294

    Article  PubMed  Google Scholar 

  145. Frydrychowicz A, Nagle SK, D’Souza SL, Vigen KK, Reeder SB (2011) Optimized high-resolution contrast-enhanced hepatobiliary imaging at 3 tesla: a cross-over comparison of gadobenate dimeglumine and gadoxetic acid. J Magn Reson Imaging 34(3):585–594

    Article  PubMed  PubMed Central  Google Scholar 

  146. Nagle SN, Busse RF, Brau AC, et al., editors. High-Resolution Free-Breathing 3D T1 Weighted Hepatobiliary Imaging Optimized for Gd-EOB-DTPA2009 2009.

  147. Earls JP, Theise ND, Weinreb JC, et al. (1996) Dysplastic nodules and hepatocellular carcinoma: thin-section MR imaging of explanted cirrhotic livers with pathologic correlation. Radiology 201(1):207–214

    Article  CAS  PubMed  Google Scholar 

  148. Kelekis NL, Semelka RC, Woosley JT (1996) Malignant lesions of the liver with high signal intensity on T1-weighted MR images. J Magn Reson Imaging 6(2):291–294

    Article  CAS  PubMed  Google Scholar 

  149. Kelekis NL, Semelka RC, Worawattanakul S, et al. (1998) Hepatocellular carcinoma in North America: a multiinstitutional study of appearance on T1-weighted, T2-weighted, and serial gadolinium-enhanced gradient-echo images. AJR Am J Roentgenol 170(4):1005–1013

    Article  CAS  PubMed  Google Scholar 

  150. Matos AP, Velloni F, Ramalho M, et al. (2015) Focal liver lesions: practical magnetic resonance imaging approach. World J Hepatol 7(16):1987–2008

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ito K (2006) Hepatocellular carcinoma: conventional MRI findings including gadolinium-enhanced dynamic imaging. Eur J Radiol 58(2):186–199

    Article  PubMed  Google Scholar 

  152. Larson RE, Semelka RC, Bagley AS, et al. (1994) Hypervascular malignant liver lesions: comparison of various MR imaging pulse sequences and dynamic CT. Radiology 192(2):393–399

    Article  CAS  PubMed  Google Scholar 

  153. Low RN, Francis IR, Sigeti JS, Foo TK (1993) Abdominal MR imaging: comparison of T2-weighted fast and conventional spin-echo, and contrast-enhanced fast multiplanar spoiled gradient-recalled imaging. Radiology 186(3):803–811

    Article  CAS  PubMed  Google Scholar 

  154. Yoshikawa T, Mitchell DG, Hirota S, et al. (2006) Focal liver lesions: breathhold gradient- and spin-echo T2-weighted imaging for detection and characterization. J Magn Reson Imaging 23(4):520–528

    Article  PubMed  Google Scholar 

  155. Miller FH, Hammond N, Siddiqi AJ, et al. (2010) Utility of diffusion-weighted MRI in distinguishing benign and malignant hepatic lesions. J Magn Reson Imaging 32(1):138–147

    Article  PubMed  Google Scholar 

  156. Inchingolo R, De Gaetano AM, Curione D, et al. (2015) Role of diffusion-weighted imaging, apparent diffusion coefficient and correlation with hepatobiliary phase findings in the differentiation of hepatocellular carcinoma from dysplastic nodules in cirrhotic liver. Eur Radiol 25(4):1087–1096

    Article  PubMed  Google Scholar 

  157. Park MJ, Kim YK, Lee MH (2013) Lee JHWJ. Validation of diagnostic criteria using gadoxetic acid-enhanced and diffusion-weighted MR imaging for small hepatocellular carcinoma (≤ 2.0 cm) in patients with hepatitis-induced liver cirrhosis. Acta Radiol 54(2):127–136

    Article  PubMed  Google Scholar 

  158. Park MJ, Kim YK, Lee MW, et al. (2012) Small hepatocellular carcinomas: improved sensitivity by combining gadoxetic acid-enhanced and diffusion-weighted MR imaging patterns. Radiology 264(3):761–770

    Article  PubMed  Google Scholar 

  159. Piana G, Trinquart L, Meskine N, et al. (2011) New MR imaging criteria with a diffusion-weighted sequence for the diagnosis of hepatocellular carcinoma in chronic liver diseases. J Hepatol 55(1):126–132

    Article  PubMed  Google Scholar 

  160. Heo SH, Jeong YY, Shin SS, et al. (2010) Apparent diffusion coefficient value of diffusion-weighted imaging for hepatocellular carcinoma: correlation with the histologic differentiation and the expression of vascular endothelial growth factor. Korean J Radiol 11(3):295–303

    Article  PubMed  PubMed Central  Google Scholar 

  161. Khatri G, Merrick L, Miller FH (2010) MR imaging of hepatocellular carcinoma. Magn Reson Imaging Clin N Am 18(3):421–450

    Article  PubMed  Google Scholar 

  162. Lim KS (2014) Diffusion-weighted MRI of hepatocellular carcinoma in cirrhosis. Clin Radiol 69(1):1–10

    Article  CAS  PubMed  Google Scholar 

  163. Ahn J-H, Yu J-S, Cho E-S, et al. (2016) Diffusion-weighted MRI of malignant versus benign portal vein thrombosis. Korean J Radiol 17(4):533–540

    Article  PubMed  PubMed Central  Google Scholar 

  164. Catalano OA, Choy G, Zhu A, Hahn PF, Sahani DV (2010) Differentiation of malignant thrombus from bland thrombus of the portal vein in patients with hepatocellular carcinoma: application of diffusion-weighted MR imaging. Radiology 254(1):154–162

    Article  PubMed  Google Scholar 

  165. Sandrasegaran K, Tahir B, Nutakki K, et al. (2013) Usefulness of conventional MRI sequences and diffusion-weighted imaging in differentiating malignant from benign portal vein thrombus in cirrhotic patients. AJR Am J Roentgenol 201(6):1211–1219

    Article  PubMed  Google Scholar 

  166. Gourtsoyianni S, Papanikolaou N, Yarmenitis S, et al. (2008) Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol 18(3):486–492

    Article  PubMed  Google Scholar 

  167. Koh D-M, Takahara T, Imai Y, Collins DJ (2007) Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci 6(4):211–224

    Article  PubMed  Google Scholar 

  168. Taouli B (2012) Diffusion-weighted MR imaging for liver lesion characterization: a critical look. Radiology 262(2):378–380

    Article  PubMed  Google Scholar 

  169. Schmid-Tannwald C, Oto A, Reiser MF, Zech CJ (2013) Diffusion-weighted MRI of the abdomen: current value in clinical routine. J Magn Reson Imaging 37(1):35–47

    Article  PubMed  Google Scholar 

  170. Kim S, Mannelli L, Hajdu CH, et al. (2010) Hepatocellular carcinoma: assessment of response to transarterial chemoembolization with image subtraction. J Magn Reson Imaging 31(2):348–355

    Article  PubMed  Google Scholar 

  171. Nakaura T, Awai K, Yanaga Y, et al. (2008) Detection of early enhancement of hypervascular hepatocellular carcinoma using single breath-hold 3D pixel shift dynamic subtraction MDCT. AJR Am J Roentgenol 190(1):W13–W18

    Article  PubMed  Google Scholar 

  172. Okumura E, Sanada S, Suzuki M, Takemura A, Matsui O (2011) Effectiveness of temporal and dynamic subtraction images of the liver for detection of small HCC on abdominal CT images: comparison of 3D nonlinear image-warping and 3D global-matching techniques. Radiol Phys Technol 4(2):109–120

    Article  PubMed  Google Scholar 

  173. Seçil M, Obuz F, Altay C, et al. (2008) The role of dynamic subtraction MRI in detection of hepatocellular carcinoma. Diagn Interv Radiol 14(4):200–204

    PubMed  Google Scholar 

  174. Sundarakumar DK, Wilson GJ, Osman SF, Zaidi SF, Maki JH (2015) Evaluation of image registration in subtracted 3D dynamic contrast-enhanced MRI of treated hepatocellular carcinoma. AJR Am J Roentgenol 204(2):287–296

    Article  PubMed  Google Scholar 

  175. Winters SD, Jackson S, Armstrong GA, et al. (2012) Value of subtraction MRI in assessing treatment response following image-guided loco-regional therapies for hepatocellular carcinoma. Clin Radiol 67(7):649–655

    Article  CAS  PubMed  Google Scholar 

  176. Gupta RT, Brady CM, Lotz J, Boll DT, Merkle EM (2010) Dynamic MR imaging of the biliary system using hepatocyte-specific contrast agents. AJR Am J Roentgenol 195(2):405–413

    Article  PubMed  Google Scholar 

  177. Lee VS, Lavelle MT, Rofsky NM, et al. (2000) Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breath-hold examination: feasibility, reproducibility, and technical quality. Radiology 215(2):365–372

    Article  CAS  PubMed  Google Scholar 

  178. Rofsky NM, Lee VS, Laub G, et al. (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212(3):876–884

    Article  CAS  PubMed  Google Scholar 

  179. Yu J-S, Rofsky NM (2003) Dynamic subtraction MR imaging of the liver: advantages and pitfalls. AJR Am J Roentgenol 180(5):1351–1357

    Article  PubMed  Google Scholar 

  180. Lee SR, Kilcoyne A, Kambadakone A, Arellano R (2016) Interventional oncology: pictorial review of post-ablation imaging of liver and renal tumors. Abdom Radiol 41(4):677–705

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash R. Kambadakone.

Ethics declarations

Funding

There is no source of funding for this project/review article. The author identifying information is on the title page that is separate from the manuscript.

Conflict of interest

Avinash R. Kambadakone declares he has no conflict of interest. Alice Fung declares she has no conflict of interest. Rajan T. Gupta declares he has no conflict of interest related to this project. Disclosures are: Consultant and Speakers Bureau—Bayer Pharma AG, Consultant—Invivo Corp, Consultant—Halyard Health. Thomas A. Hope declares he has no conflict of interest related to this project. Disclosures are: Research funding from GE. Kathryn J. Fowler declares she has no conflict of interest. Andrej Lyshchik declares he has no conflict of interest. Karthik Ganesan declares he has no conflict of interest. Vahid Yaghmai declares he has no conflict of interest. Alexander R. Guimaraes declares he has no conflict of interest. Dushyant V. Sahani declares he has no conflict of interest related to this project. Disclosures are: Royalties from Elsevier and Research Grant from GE healthcare. Frank H. Miller declares he has no conflict of interest related to this project. Disclosures are: Research Grant from Siemens (No funds associated).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

The original version of this article is revised: “The original version of this article unfortunately contained mistakes in the author list. The following author names were listed without middle initial. The correct author names are: Avinash R. Kambadakone, Rajan T. Gupta, Thomas A. Hope, Kathryn J. Fowler, Alexander R. Guimaraes, Dushyant V. Sahani, Frank H. Miller”.

A correction to this article is available online at https://doi.org/10.1007/s00261-017-1345-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kambadakone, A.R., Fung, A., Gupta, R.T. et al. LI-RADS technical requirements for CT, MRI, and contrast-enhanced ultrasound. Abdom Radiol 43, 56–74 (2018). https://doi.org/10.1007/s00261-017-1325-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-017-1325-y

Keywords

Navigation