Skip to main content

Advertisement

Log in

Combined evaluation of regional coronary artery calcium and myocardial perfusion by 82Rb PET/CT in the identification of obstructive coronary artery disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Cardiac imaging with PET/CT allows measurement of coronary artery calcium (CAC), myocardial perfusion and coronary vascular function. We investigated whether the combined assessment of regional CAC score, ischemic total perfusion deficit (ITPD) and quantitative coronary vascular function would further improve the diagnostic accuracy of PET/CT in predicting obstructive coronary artery disease (CAD).

Methods

We analyzed 113 patients with suspected CAD referred to 82Rb PET/CT myocardial perfusion imaging with available coronary angiographic data. Obstructive CAD was defined as ≥75% stenosis. The receiver operating characteristic area under curve (AUC) was applied to evaluate the ability of CAC score, ITPD, hyperemic myocardial blood flow (MBF) and coronary flow reserve (CFR) to identify CAD.

Results

Vessels with obstructive CAD (71 vessels) had higher ITPD (4.6 ± 6.2 vs. 0.6 ± 1.3) and lower hyperemic MBF (1.01 ± 0.5 vs. 1.75 ± 0.6 ml/min/g) and CFR (1.56 ± 0.6 vs. 2.38 ± 0.7; all p < 0.001) than those without. In prediction of per-vessel CAD, the AUCs for the models including CAC/ITPD/hyperemic MBF (0.869) and CAC/ITPD/CFR (0.875) were higher (both p < 0.01) than for the model including CAC/ITPD (0.790). Compared with CAC/ITPD, continuous net reclassification improvement was 0.69 (95% bootstrap confidence interval, CI, 0.365–1.088) for the CAC/ITPD/hyperemic MBF model and 0.99 (95% bootstrap CI 0.64–1.26) for the CAC/ITPD/CFR model.

Conclusion

Hyperemic MBF and CFR provide incremental information about the presence of CAD over CAC score and perfusion imaging parameters. The combined use of CAC, myocardial perfusion imaging and quantitative coronary vascular function in may help predict more accurately the presence of obstructive CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol. 2007;49:1052–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kaster TS, Dwivedi G, Susser L, Renaud JM, Beanlands RS, Chow BJ, et al. Single low-dose CT scan optimized for rest-stress PET attenuation correction and quantification of coronary artery calcium. J Nucl Cardiol. 2015;22:419–28.

    Article  PubMed  Google Scholar 

  3. Bybee KA, Lee J, Markiewicz R, Longmore R, McGhie AI, O’Keefe JH, et al. Diagnostic and clinical benefit of combined coronary calcium and perfusion assessment in patients undergoing PET/CT myocardial perfusion stress imaging. J Nucl Cardiol. 2010;17:188–96.

    Article  PubMed  Google Scholar 

  4. Johnson NP, Gould KL. Physiological basis for angina and ST segment change PET-verified thresholds of quantitative stress myocardial perfusion and coronary flow reserve. JACC Cardiovasc Imaging. 2011;4:990–8.

    Article  PubMed  Google Scholar 

  5. Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62:1639–53.

    Article  PubMed  Google Scholar 

  6. Naya M, Murthy VL, Taqueti VR, Foster CR, Klein J, Garber M, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55:248–55.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Berman DS, Rozanski A. Value-based imaging: combining coronary artery calcium with myocardial perfusion imaging. J Nucl Cardiol. 2016;23:939–41.

    Article  PubMed  Google Scholar 

  8. Brodov Y, Gransar H, Dey D, Shalev A, Germano G, Friedman JD, et al. Combined quantitative assessment of myocardial perfusion and coronary artery calcium score by hybrid 82Rb PET/CT improves detection of coronary artery disease. J Nucl Med. 2015;56:1345–50.

    Article  CAS  PubMed  Google Scholar 

  9. Assante R, Zampella E, Arumugam P, Acampa W, Imbriaco M, Tout D, et al. Quantitative relationship between coronary artery calcium and myocardial blood flow by hybrid rubidium-82 PET/CT imaging in patients with suspected coronary artery disease. J Nucl Cardiol. 2017;24:494–501.

    Article  PubMed  Google Scholar 

  10. Cerqueira M, Weissman N, Dilsizian V, Jacobs A, Kaul S, Laskey W, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.

    Article  PubMed  Google Scholar 

  11. Nakazato R, Dey D, Alexánderson E, Meave A, Jiménez M, Romero E, et al. Automatic alignment of myocardial perfusion PET and 64-slice coronary CT angiography on hybrid PET/CT. J Nucl Cardiol. 2012;19:482–91.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RS, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 PET and a highly automated analysis program. J Nucl Cardiol. 2010;17:600–16.

    Article  PubMed  Google Scholar 

  13. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.

    Article  CAS  PubMed  Google Scholar 

  14. Becker A, Leber A, White CW, Becker C, Reiser MF, Knez A. Multislice computed tomography for determination of coronary artery disease in a symptomatic patient population. Int J Cardiovasc Imaging. 2007;23:361–7.

    Article  PubMed  Google Scholar 

  15. Petretta M, Acampa W, Daniele S, Petretta MP, Nappi C, Assante R, et al. Transient ischemic dilation in SPECT myocardial perfusion imaging for prediction of severe coronary artery disease in diabetic patients. J Nucl Cardiol. 2013;20:45–52.

    Article  PubMed  Google Scholar 

  16. Schonlau M. Boosted regression (boosting): an introductory tutorial and a Stata plugin. Stata J. 2005;5:330–54.

    Google Scholar 

  17. Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30:11–21.

    Article  PubMed  Google Scholar 

  18. Chow BJ, Dennie C, Hoffmann U, So D, de Kemp RA, Ruddy TD, et al. Comparison of computed tomographic angiography versus rubidium-82 positron emission tomography for the detection of patients with anatomical coronary artery disease. Can J Cardiol. 2007;23:801–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Einstein AJ, Johnson LL, Bokhari S, Son J, Thompson RC, Bateman TM, et al. Agreement of visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in hybrid PET/CT and SPECT/CT with standard Agatston score. J Am Coll Cardiol. 2010;56:1914–21.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nappi C, Nicolai E, Daniele S, Acampa W, Gaudieri V, Assante R, et al. Long-term prognostic value of coronary artery calcium scanning, coronary computed tomographic angiography and stress myocardial perfusion imaging in patients with suspected coronary artery disease. J Nucl Cardiol. 2016. https://doi.org/10.1007/s12350-016-0657-2

    PubMed  Google Scholar 

  21. Curillova Z, Yaman BF, Dorbala S, Kwong RY, Sitek A, El Fakhri G, et al. Quantitative relationship between coronary calcium content and coronary flow reserve as assessed by integrated PET/CT imaging. Eur J Nucl Med Mol Imaging. 2009;36:1603–10.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schepis T, Gaemperli O, Koepfli P, Namdar M, Valenta I, Scheffel H, et al. Added value of coronary artery calcium score as an adjunct to gated SPECT for the evaluation of coronary artery disease in an intermediate-risk population. J Nucl Med. 2007;48:1424–30.

    Article  PubMed  Google Scholar 

  23. Yoshinaga K, Katoh C, Manabe O, Klein R, Naya M, Sakakibara M, et al. Incremental diagnostic value of regional myocardial blood flow quantification over relative perfusion imaging with generator-produced rubidium-82 PET. Circ J. 2011;75:2628–34.

    Article  PubMed  Google Scholar 

  24. Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med. 2012;53:1230–4.

    Article  CAS  PubMed  Google Scholar 

  25. Naya M, Murthy VL, Blankstein R, Sitek A, Hainer J, Foster C, et al. Quantitative relationship between the extent and morphology of coronary atherosclerotic plaque and downstream myocardial perfusion. J Am Coll Cardiol. 2011;58:1807–16.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Meintjes M, Sathekge M, Makanjee CR, Dickson JC, Endozo R, Rheeder P, et al. Comparison of rubidium-82 myocardial blood flow quantification with coronary calcium score for evaluation of coronary artery stenosis. Nucl Med Commun. 2016;37:197–206.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cuocolo.

Ethics declarations

Conflicts of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zampella, E., Acampa, W., Assante, R. et al. Combined evaluation of regional coronary artery calcium and myocardial perfusion by 82Rb PET/CT in the identification of obstructive coronary artery disease. Eur J Nucl Med Mol Imaging 45, 521–529 (2018). https://doi.org/10.1007/s00259-018-3935-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-3935-1

Keywords

Navigation