Skip to main content

Advertisement

Log in

Imaging children suffering from lymphoma: an evaluation of different 18F-FDG PET/MRI protocols compared to whole-body DW-MRI

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Objectives

The objectives of this study were to evaluate and compare the diagnostic potential of different PET/MRI reading protocols, entailing non-enhanced / contrast-enhanced and diffusion-weighted 18F–FDG PET/MR imaging and whole-body diffusion-weighted MRI for lesion detection and determination of the tumor stage in pediatric lymphoma patients.

Methods

A total of 28 18F–FDG PET/MRI datasets were included for analysis of four different reading protocols: (1) PET/MRI utilizing sole unenhanced T2w and T1w imaging, (2) PET/MRI utilizing additional contrast enhanced sequences, (3) PET/MR imaging utilizing unenhanced, contrast enhanced and DW imaging or (4) WB-DW-MRI. Statistical analyses were performed on a per-patient and a per-lesion basis. Follow-up and prior examinations as well as histopathology served as reference standards.

Results

PET/MRI correctly identified all 17 examinations with active lymphoma disease, while WB-DW-MRI correctly identified 15/17 examinations. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were 96%, 96.5%, 97%, 95%, and 96% for PET/MRI1; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI2; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI3 and 77%, 96%, 96%, 78.5% and 86% for MRI-DWI.

Conclusion

18F–FDG PET/MRI is superior to WB-DW-MRI in staging pediatric lymphoma patients. Neither application of contrast media nor DWI leads to a noticeable improvement of the diagnostic accuracy of PET/MRI. Thus, unenhanced PET/MRI may play a crucial role for the diagnostic work-up of pediatric lymphoma patients in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Linet MS, Ries LA, Smith MA, Tarone RE, Devesa SS. Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the United States. J Natl Cancer Inst. 1999;91:1051–8.

    Article  CAS  PubMed  Google Scholar 

  2. Riad R, Omar W, Kotb M, Hafez M, Sidhom I, Zamzam M, et al. Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imaging. 2010;37:319–29. doi:10.1007/s00259-009-1276-9.

    Article  PubMed  Google Scholar 

  3. London K, Cross S, Onikul E, Dalla-Pozza L, Howman-Giles R. 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging. Eur J Nucl Med Mol Imaging. 2011;38:274–84. doi:10.1007/s00259-010-1619-6.

    Article  PubMed  Google Scholar 

  4. Bakhshi S, Radhakrishnan V, Sharma P, Kumar R, Thulkar S, Vishnubhatla S, et al. Pediatric nonlymphoblastic non-Hodgkin lymphoma: baseline, interim, and posttreatment PET/CT versus contrast-enhanced CT for evaluation--a prospective study. Radiology. 2012;262:956–68. doi:10.1148/radiol.11110936.

    Article  PubMed  Google Scholar 

  5. Sherief LM, Elsafy UR, Abdelkhalek ER, Kamal NM, Elbehedy R, Hassan TH, et al. Hodgkin lymphoma in childhood: clinicopathological features and therapy outcome at 2 centers from a developing country. Medicine. 2015;94:e670. doi:10.1097/MD.0000000000000670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burkhardt B, Zimmermann M, Oschlies I, Niggli F, Mann G, Parwaresch R, et al. The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol. 2005;131:39–49. doi:10.1111/j.1365-2141.2005.05735.x.

    Article  PubMed  Google Scholar 

  7. Brenner DJ, Elliston CD. Estimated radiation risks potentially associated with full-body CT screening. Radiology. 2004;232:735–8. doi:10.1148/radiol.2323031095.

    Article  PubMed  Google Scholar 

  8. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360. doi:10.1136/bmj.f2360.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84. doi:10.1056/NEJMra072149.

    Article  CAS  PubMed  Google Scholar 

  10. Platzek I, Beuthien-Baumann B, Langner J, Popp M, Schramm G, Ordemann R, et al. PET/MR for therapy response evaluation in malignant lymphoma: initial experience. MAGMA. 2013;26:49–55. doi:10.1007/s10334-012-0342-7.

    Article  CAS  PubMed  Google Scholar 

  11. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Furst S, Martinez-Moller A, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2012;53:845–55. doi:10.2967/jnumed.111.098608.

    Article  Google Scholar 

  12. Heusch P, Nensa F, Schaarschmidt B, Sivanesapillai R, Beiderwellen K, Gomez B, et al. Diagnostic accuracy of whole-body PET/MRI and whole-body PET/CT for TNM staging in oncology. Eur J Nucl Med Mol Imaging. 2015;42:42–8. doi:10.1007/s00259-014-2885-5.

    Article  CAS  PubMed  Google Scholar 

  13. Sher AC, Seghers V, Paldino MJ, Dodge C, Krishnamurthy R, Krishnamurthy R, et al. Assessment of sequential PET/MRI in comparison with PET/CT of pediatric lymphoma: a prospective study. AJR Am J Roentgenol. 2016;206:623–31. doi:10.2214/AJR.15.15083.

    Article  PubMed  Google Scholar 

  14. Ponisio MR, McConathy J, Laforest R, Khanna G. Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma. Pediatr Radiol. 2016;46:1258–68. doi:10.1007/s00247-016-3601-3.

    Article  PubMed  Google Scholar 

  15. Gatidis S, Schmidt H, Gucke B, Bezrukov I, Seitz G, Ebinger M, et al. Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous (1)(8)F-Fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: a direct comparison to (1)(8)F-Fluorodeoxyglucose positron emission tomography/computed tomography. Investig Radiol. 2016;51:7–14. doi:10.1097/RLI.0000000000000200.

    Article  Google Scholar 

  16. Radbruch A, Weberling LD, Kieslich PJ, Eidel O, Burth S, Kickingereder P, et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology. 2015;275:783–91. doi:10.1148/radiol.2015150337.

    Article  PubMed  Google Scholar 

  17. Ghielmini M, Vitolo U, Kimby E, Montoto S, Walewski J, Pfreundschuh M, et al. ESMO guidelines consensus conference on malignant lymphoma 2011 part 1: diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL). Annals of oncology : official journal of the European Society for Medical Oncology. 2013;24:561–76. doi:10.1093/annonc/mds517.

    Article  CAS  Google Scholar 

  18. Eichenauer DA, Engert A, Andre M, Federico M, Illidge T, Hutchings M, et al. Hodgkin’s lymphoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Annals of oncology : official journal of the European Society for Medical Oncology. 2014;25(Suppl 3):iii70–5. doi:10.1093/annonc/mdu181.

    Article  Google Scholar 

  19. Quick HH. Integrated PET/MR. Journal of magnetic resonance imaging : JMRI. 2014;39:243–58. doi:10.1002/jmri.24523.

    Article  PubMed  Google Scholar 

  20. Littooij AS, Kwee TC, Barber I, Granata C, Vermoolen MA, Enriquez G, et al. Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard. Eur Radiol. 2014;24:1153–65. doi:10.1007/s00330-014-3114-0.

    Article  PubMed  Google Scholar 

  21. Herrmann K, Queiroz M, Huellner MW, de Galiza BF, Buck A, Schaefer N, et al. Diagnostic performance of FDG-PET/MRI and WB-DW-MRI in the evaluation of lymphoma: a prospective comparison to standard FDG-PET/CT. BMC Cancer. 2015;15:1002. doi:10.1186/s12885-015-2009-z.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grueneisen J, Sawicki LM, Schaarschmidt BM, Suntharalingam S, von der Ropp S, Wetter A, et al. Evaluation of a fast protocol for staging lymphoma patients with integrated PET/MRI. PLoS One. 2016;11:e0157880. doi:10.1371/journal.pone.0157880.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2014;32:3059–68. doi:10.1200/JCO.2013.54.8800.

    Article  Google Scholar 

  24. Johnson SA, Kumar A, Matasar MJ, Schoder H, Rademaker J. Imaging for staging and response assessment in lymphoma. Radiology. 2015;276:323–38. doi:10.1148/radiol.2015142088.

    Article  PubMed  Google Scholar 

  25. Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C. Report on the first international workshop on interim-PET-scan in lymphoma. Leukemia & lymphoma. 2009;50:1257–60. doi:10.1080/10428190903040048.

    Article  Google Scholar 

  26. Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Mueller SP, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the international conference on malignant lymphomas imaging working group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2014;32:3048–58. doi:10.1200/jco.2013.53.5229.

    Article  Google Scholar 

  27. Antoch G, Stattaus J, Nemat AT, Marnitz S, Beyer T, Kuehl H, et al. Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology. 2003;229:526–33. doi:10.1148/radiol.2292021598.

    Article  PubMed  Google Scholar 

  28. Wu X, Kellokumpu-Lehtinen PL, Pertovaara H, Korkola P, Soimakallio S, Eskola H, et al. Diffusion-weighted MRI in early chemotherapy response evaluation of patients with diffuse large B-cell lymphoma--a pilot study: comparison with 2-deoxy-2-fluoro- D-glucose-positron emission tomography/computed tomography. NMR Biomed. 2011;24:1181–90. doi:10.1002/nbm.1689.

    Article  CAS  PubMed  Google Scholar 

  29. Rosolen A, Perkins SL, Pinkerton CR, Guillerman RP, Sandlund JT, Patte C, et al. Revised international pediatric non-Hodgkin lymphoma staging system. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2015;33:2112–8. doi:10.1200/JCO.2014.59.7203.

    Article  Google Scholar 

  30. Sawicki LM, Grueneisen J, Schaarschmidt BM, Buchbender C, Nagarajah J, Umutlu L, et al. Evaluation of (1)(8)F-FDG PET/MRI, (1)(8)F-FDG PET/CT, MRI, and CT in whole-body staging of recurrent breast cancer. Eur J Radiol. 2016;85:459–65. doi:10.1016/j.ejrad.2015.12.010.

    Article  PubMed  Google Scholar 

  31. Buchbender C, Hartung-Knemeyer V, Beiderwellen K, Heusch P, Kuhl H, Lauenstein TC, et al. Diffusion-weighted imaging as part of hybrid PET/MRI protocols for whole-body cancer staging: does it benefit lesion detection? Eur J Radiol. 2013;82:877–82. doi:10.1016/j.ejrad.2013.01.019.

    Article  PubMed  Google Scholar 

  32. Beiderwellen K, Gomez B, Buchbender C, Hartung V, Poeppel TD, Nensa F, et al. Depiction and characterization of liver lesions in whole body [(1)(8)F]-FDG PET/MRI. Eur J Radiol. 2013;82:e669–75. doi:10.1016/j.ejrad.2013.07.027.

    Article  PubMed  Google Scholar 

  33. Cheson BD. Staging and response assessment in lymphomas: the new Lugano classification. Chin Clin Oncol. 2015;4:5. doi:10.3978/j.issn.2304-3865.2014.11.03.

    PubMed  Google Scholar 

  34. Guay C, Lepine M, Verreault J, Benard F. Prognostic value of PET using 18F-FDG in Hodgkin’s disease for posttreatment evaluation. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2003;44:1225–31.

    Google Scholar 

  35. Kleis M, Daldrup-Link H, Matthay K, Goldsby R, Lu Y, Schuster T, et al. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging. 2009;36:23–36. doi:10.1007/s00259-008-0911-1.

    Article  PubMed  Google Scholar 

  36. Brix G, Nosske D, Lechel U. Radiation exposure of patients undergoing whole-body FDG-PET/CT examinations: an update pursuant to the new ICRP recommendations. Nuklearmedizin Nuclear medicine. 2014;53:217–20. doi:10.3413/Nukmed-0663-14-04.

    Article  CAS  PubMed  Google Scholar 

  37. Klenk C, Gawande R, Uslu L, Khurana A, Qiu D, Quon A, et al. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. The Lancet Oncology. 2014;15:275–85. doi:10.1016/S1470-2045(14)70021-X.

    Article  PubMed  Google Scholar 

  38. Schafer JF, Gatidis S, Schmidt H, Guckel B, Bezrukov I, Pfannenberg CA, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273:220–31. doi:10.1148/radiol.14131732.

    Article  PubMed  Google Scholar 

  39. Kirchner J, Deuschl C, Grueneisen J, Herrmann K, Forsting M, Heusch P, et al. 18F-FDG PET/MRI in patients suffering from lymphoma: how much MRI information is really needed? Eur J Nucl Med Mol Imaging. 2017; doi:10.1007/s00259-017-3635-2.

  40. Park SH, Lee JJ, Kim HO, Lee DY, Suh C, Jung HY, et al. 18F-Fluorodeoxyglucose (FDG)-positron emission tomography/computed tomography in mucosa-associated lymphoid tissue lymphoma: variation in 18F-FDG avidity according to site involvement. Leukemia & lymphoma. 2015;56:3288–94. doi:10.3109/10428194.2015.1030640.

    Article  Google Scholar 

  41. Hartung-Knemeyer V, Beiderwellen KJ, Buchbender C, Kuehl H, Lauenstein TC, Bockisch A, et al. Optimizing positron emission tomography image acquisition protocols in integrated positron emission tomography/magnetic resonance imaging. Investig Radiol. 2013;48:290–4. doi:10.1097/RLI.0b013e3182823695.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Kirchner.

Ethics declarations

Funding

None.

Conflict of interest

None.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirchner, J., Deuschl, C., Schweiger, B. et al. Imaging children suffering from lymphoma: an evaluation of different 18F-FDG PET/MRI protocols compared to whole-body DW-MRI. Eur J Nucl Med Mol Imaging 44, 1742–1750 (2017). https://doi.org/10.1007/s00259-017-3726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3726-0

Keywords

Navigation