Skip to main content

Advertisement

Log in

Texture analysis of 18F-FDG PET/CT to predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This retrospective study was done to examine whether the heterogeneity in primary tumour F-18-fluorodeoxyglucose (18F-FDG) distribution can predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy (CRT).

Methods

The enrolled 52 patients with esophageal cancer underwent 18F-FDG-PET/CT studies before CRT. SUVmax, SUVmean, metabolic tumour volume (MTV, SUV ≥ 2.5), total lesion glycolysis (TLG) and six heterogeneity parameters assessed by texture analysis were obtained. Patients were classified as responders or non-responders according to Response Evaluation Criteria in Solid Tumors. Progression-free survival (PFS) and overall survival (OS) were calculated by the Kaplan–Meier method. Prognostic significance was assessed by Cox proportional hazards analysis.

Results

Thirty four non-responders showed significantly higher MTV (p = 0.006), TLG (p = 0.007), intensity variability (IV; p = 0.003) and size-zone variability (SZV; p = 0.004) than 18 responders. The positive and negative predictive values for non-responders were 77 % and 69 % in MTV, 76 % and 100 % in TLG, 78 % and 67 % in IV and 78 % and 82 % in SZV, respectively. Although PFS and OS were significantly shorter in patients with high MTV (PFS, p = 0.018; OS, p = 0.014), TLG (PFS, p = 0.009; OS, p = 0.025), IV (PFS, p = 0.013; OS, p = 0.007) and SZV (PFS, p = 0.010; OS, p = 0.007) at univariate analysis, none of them was an independent factor, while lymph node status, stage and tumour response status were independent factors at multivariate analysis.

Conclusion

Texture features IV and SZV, and volumetric parameters MTV and TLG can predict tumour response, but all of them have limited value in prediction of prognosis of patients with esophageal cancer treated by CRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Higuchi K, Koizumi W, Tanabe S, Sasaki T, Katada C, Azuma M, et al. Current management of esophageal squamous-cell carcinoma in Japan and other countries. Gastrointest Cancer Res. 2009;3:153–61.

    PubMed  PubMed Central  Google Scholar 

  3. Kato H, Fukuchi M, Manda R, Faried A, Takita J, Nakajima M, et al. The effectiveness of planned esophagectomy after neoadjuvant chemoradiotherapy for advanced esophageal carcinomas. Anticancer Res. 2004;24:4091–6.

    PubMed  Google Scholar 

  4. Suzuki A, Xiao L, Hayashi Y, Blum MA, Welsh JW, Lin SH, et al. Nomograms for prognostication of outcome in patients with esophageal and gastroesophageal carcinoma undergoing definitive chemoradiotherapy. Oncology. 2012;82:108–13.

    Article  CAS  PubMed  Google Scholar 

  5. Morita M, Kumashiro R, Hisamatsu Y, Nakanishi R, Egashira A, Saeki H, et al. Clinical significance of salvage esophagectomy for remnant or recurrent cancer following definitive chemoradiotherapy. J Gastroenterol. 2011;46:1284–91.

    Article  CAS  PubMed  Google Scholar 

  6. Kato K, Muro K, Minashi K, Ohtsu A, Ishikura S, Boku N, et al. Phase II study of chemoradiotherapy with 5-fluorouracil and cisplatin for Stage II-III esophageal squamous cell carcinoma: JCOG trial (JCOG 9906). Int J Radiat Oncol Biol Phys. 2011;81:684–90.

    Article  CAS  PubMed  Google Scholar 

  7. Stahl M, Stuschke M, Lehmann N, Meyer HJ, Walz MK, Seeber S, et al. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J Clin Oncol. 2005;23:2310–7.

    Article  PubMed  Google Scholar 

  8. von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology. 2006;238:405–22.

    Article  Google Scholar 

  9. Kato H, Nakajima M. The efficacy of FDG-PET for the management of esophageal cancer: review article. Ann Thorac Cardiovasc Surg. 2012;18:412–9.

    Article  PubMed  Google Scholar 

  10. Hatt M, Visvikis D, Pradier O, Cheze-le RC. Baseline 18F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer. Eur J Nucl Med Mol Imaging. 2011;38:1595–606.

    Article  PubMed  PubMed Central  Google Scholar 

  11. El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn. 2009;42:1162–71.

    Article  Google Scholar 

  12. Cook GJ, O’Brien ME, Siddique M, Chicklore S, Loi HY, Sharma B, et al. Non-small cell lung cancer treated with erlotinib: heterogeneity of 18F-FDG uptake at PET-association with treatment response and prognosis. Radiology. 2015;276:883–93.

    Article  PubMed  Google Scholar 

  13. Lee HS, Oh JS, Park YS, Jang SJ, Choi IS, Ryu JS. Differentiating the grades of thymic epithelial tumor malignancy using textural features of intratumoral heterogeneity via 18F-FDG PET/CT. Ann Nucl Med. 2016;30:309–19.

    Article  CAS  PubMed  Google Scholar 

  14. Hyun SH, Kim HS, Choi SH, Choi DW, Lee JK. Intratumoral heterogeneity of 18F-FDG uptake predicts survival in patients with pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging. 2016;43:1461–8.

    Article  CAS  PubMed  Google Scholar 

  15. Pugachev A, Ruan S, Carlin S, Larson SM, Campa J, Ling CC, et al. Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol Biol Phys. 2005;62:545–53.

    Article  CAS  PubMed  Google Scholar 

  16. van Baardwijk A, Bosmans G, van Suylen RJ, van Kroonenburgh M, Hochstenbag M, Geskes G, et al. Correlation of intra-tumour heterogeneity on 18F-FDG PET with pathologic features in non-small cell lung cancer: a feasibility study. Radiother Oncol. 2008;87:55–8.

    Article  PubMed  Google Scholar 

  17. van Velden FH, Cheebsumon P, Yaqub M, Smit EF, Hoekstra OS, Lammertsma AA, et al. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging. 2011;38:1636–47.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Asselin MC, O’Connor JP, Boellaard R, Thacker NA, Jackson A. Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer. 2012;48:447–55.

    Article  PubMed  Google Scholar 

  19. Cheng NM, Fang YH, Chang JT, Huang CG, Tsan DL, Ng SH, et al. Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J Nucl Med. 2013;54:1703–9.

    Article  CAS  PubMed  Google Scholar 

  20. Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.

    Article  PubMed  Google Scholar 

  21. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.

    Article  PubMed  Google Scholar 

  22. Tan S, Kligerman S, Chen W, Lu M, Kim G, Feigenberg S, et al. Spatial-temporal [18F]FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2013;85:1375–82.

    Article  PubMed  Google Scholar 

  23. Hatt M, Tixier F, Cheze Le Rest C, Pradier O, Visvikis D. Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:1662–71.

    Article  PubMed  Google Scholar 

  24. Yip SS, Coroller TP, Sanford NN, Huynh E, Mamon H, Aerts HJ, et al. Use of registration-based contour propagation in texture analysis for esophageal cancer pathologic response prediction. Phys Med Biol. 2016;61:906–22.

    Article  CAS  PubMed  Google Scholar 

  25. Doumou G, Siddique M, Tsoumpas C, Goh V, Cook GJ. The precision of textural analysis in 18F-FDG-PET scans of oesophageal cancer. Eur Radiol. 2015;25:2805–12.

    Article  PubMed  Google Scholar 

  26. Dong X, Xing L, Wu P, Fu Z, Wan H, Li D, et al. Three-dimensional positron emission tomography image texture analysis of esophageal squamous cell carcinoma: relationship between tumor 18F-fluorodeoxyglucose uptake heterogeneity, maximum standardized uptake value, and tumor stage. Nucl Med Commun. 2013;34:40–6.

    Article  CAS  PubMed  Google Scholar 

  27. Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44.

    Article  CAS  PubMed  Google Scholar 

  28. Rice TW, Blackstone EH, Rusch VW. 7th edition of the AJCC Cancer Staging Manual: esophagus and esophagogastric junction. Ann Surg Oncol. 2010;17:1721–4.

    Article  PubMed  Google Scholar 

  29. Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49:1012–6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.

    Article  PubMed  Google Scholar 

  31. Gebejes A, Huertas R. Texture characterization based on grey-level Co-occurrence matrix. Proc ICTIC (Proc Conf Inf Manag Sci). 2013;2:375–8.

    Google Scholar 

  32. Cheng NM, Fang YH, Lee LY, Chang JT, Tsan DL, Ng SH, et al. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur J Nucl Med Mol Imaging. 2015;42:419–28.

    Article  CAS  PubMed  Google Scholar 

  33. Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.

    Article  CAS  PubMed  Google Scholar 

  34. Brooks FJ, Grigsby PW. The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med. 2014;55:37–42.

    Article  CAS  PubMed  Google Scholar 

  35. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  CAS  PubMed  Google Scholar 

  36. Arslan N, Miller TR, Dehdashti F, Battafarano RJ, Siegel BA. Evaluation of response to neoadjuvant therapy by quantitative 2- deoxy-2-[18F]fluoro-D-glucose with positron emission tomography in patients with esophageal cancer. Mol Imaging Biol. 2002;4:301–10.

    Article  PubMed  Google Scholar 

  37. Roedl JB, Colen RR, Holalkere NS, Fischman AJ, Choi NC, Blake MA. Adenocarcinomas of the esophagus: response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET-CT. Comparison to histopathologic and clinical response evaluation. Radiother Oncol. 2008;89:278–86.

    Article  CAS  PubMed  Google Scholar 

  38. Hyun SH, Choi JY, Shim YM, Kim K, Lee SJ, Cho YS, et al. Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol. 2010;17:115–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoyo Nakajo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was waived by the institutional review board for this retrospective study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 12 kb)

Table S2

(DOCX 19 kb)

Table S3

(DOCX 12 kb)

Table S4

(DOCX 12 kb)

Table S5

(DOCX 12 kb)

Table S6

(DOCX 249 kb)

Fig S1aFig S1bFig S1c

(GIF 49 kb)

(GIF 51 kb)

(GIF 56 kb)

High Resolution Image (TIF 487 kb)

High Resolution Image (TIF 469 kb)

High Resolution Image (TIF 532 kb)

Fig S2aFig S2bFig S2c

(GIF 52 kb)

(GIF 46 kb)

(GIF 58 kb)

High Resolution Image (TIF 510 kb)

High Resolution Image (TIF 435 kb)

High Resolution Image (TIF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajo, M., Jinguji, M., Nakabeppu, Y. et al. Texture analysis of 18F-FDG PET/CT to predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy. Eur J Nucl Med Mol Imaging 44, 206–214 (2017). https://doi.org/10.1007/s00259-016-3506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-016-3506-2

Keywords

Navigation