Skip to main content

Advertisement

Log in

Metabolic patterns in prion diseases: an FDG PET voxel-based analysis

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Clinical diagnosis of human prion diseases can be challenging since symptoms are common to other disorders associated with rapidly progressive dementia. In this context, 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) might be a useful complementary tool. The aim of this study was to determine the metabolic pattern in human prion diseases, particularly sporadic Creutzfeldt-Jakob disease (sCJD), the new variant of Creutzfeldt-Jakob disease (vCJD) and fatal familial insomnia (FFI).

Methods

We retrospectively studied 17 patients with a definitive, probable or possible prion disease who underwent FDG PET in our institution. Of these patients, 12 were diagnosed as sCJD (9 definitive, 2 probable and 1 possible), 1 was diagnosed as definitive vCJD and 4 were diagnosed as definitive FFI. The hypometabolic pattern of each individual and comparisons across the groups of subjects (control subjects, sCJD and FFI) were evaluated using a voxel-based analysis.

Results

The sCJD group exhibited a pattern of hypometabolism that affected both subcortical (bilateral caudate, thalamus) and cortical (frontal cortex) structures, while the FFI group only presented a slight hypometabolism in the thalamus. Individual analysis demonstrated a considerable variability of metabolic patterns among patients, with the thalamus and basal ganglia the most frequently affected areas, combined in some cases with frontal and temporal hypometabolism.

Conclusion

Patients with a prion disease exhibit a characteristic pattern of brain metabolism presentation in FDG PET imaging. Consequently, in patients with rapidly progressive cognitive impairment, the detection of these patterns in the FDG PET study could orient the diagnosis to a prion disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ortega-Cubero S, Luquín M, Domínguez I, Arbizu J, Pagola I, Carmona-Abellán M, et al. Structural and functional neuroimaging in human prion diseases. Neurologia 2013;28:299–308.

    Article  CAS  PubMed  Google Scholar 

  2. Prusiner SB, Scott MR, DeArmond SJ, Cohen FE. Prion protein biology. Cell 1998;93:337–48.

    Article  CAS  PubMed  Google Scholar 

  3. Goldfarb LG, Petersen RB, Tabaton M, Brown P, LeBlanc AC, Montagna P, et al. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science 1992;258:806–8.

    Article  CAS  PubMed  Google Scholar 

  4. Zerr I, Kallenberg K, Summers DM, Romero C, Taratuto A, Heinemann U, et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain 2009;132:2659–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. World Health Organization. The revision of the surveillance case definition for variant Creutzfeldt-Jakob disease (vCJD). 2001.

  6. Letourneau-Guillon L, Wada R, Kucharczyk W. Imaging of prion diseases. J Magn Reson Imaging 2012;35:998–1012.

    Article  PubMed  Google Scholar 

  7. Ortega-Cubero S, Pagola I, Luquin MR, Viteri C, Pastor P, Gállego Pérez-Larraya J, et al. Clinical and neuroimaging characteristics of 14 patients with prionopathy: a descriptive study. Neurologia 2014;30:144–52.

    Article  PubMed  Google Scholar 

  8. Zhao W, Zhang J, Xing X, Huang D, Tian C, Jia W, et al. Chinese specific characteristics of sporadic Creutzfeldt-Jakob disease: a retrospective analysis of 57 cases. PLoS One 2013;8:e58442.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kim E, Cho S, Jeong B, Kim Y, Seo SW, Na DL, et al. Glucose metabolism in sporadic Creutzfeldt-Jakob disease: a statistical parametric mapping analysis of (18)F‐FDG PET. Eur J Neurol 2012;19:488–93.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Renard D, Vandenberghe R, Collombier L, Kotzki P, Pouget J, Boudousq V. Glucose metabolism in nine patients with probable sporadic Creutzfeldt-Jakob disease: FDG-PET study using SPM and individual patient analysis. J Neurol 2013;260:3055–64.

    Article  CAS  PubMed  Google Scholar 

  11. World Health Organization. WHO manual for surveillance of human transmissible spongiform encephalopathies including variant Creutzfeldt-Jakob disease. 2003.

  12. Heath CA, Cooper SA, Murray K, Lowman A, Henry C, MacLeod MA, et al. Validation of diagnostic criteria for variant Creutzfeldt-Jakob disease. Ann Neurol 2010;67:761–70.

    PubMed  Google Scholar 

  13. Henkel K, Zerr I, Hertel A, Gratz K, Schröter A, Tschampa HJ, et al. Positron emission tomography with [(18)F]FDG in the diagnosis of Creutzfeldt-Jakob disease (CJD). J Neurol 2002;249:699–705.

    Article  PubMed  Google Scholar 

  14. Villemagne VL, McLean CA, Reardon K, Boyd A, Lewis V, Klug G, et al. 11C-PiB PET studies in typical sporadic Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 2009;80:998–1001.

    Article  CAS  PubMed  Google Scholar 

  15. Montagna P, Gambetti P, Cortelli P, Lugaresi E. Familial and sporadic fatal insomnia. Lancet Neurol 2003;2:167–76.

    Article  CAS  PubMed  Google Scholar 

  16. Riverol M, Palma JA, Alañá M, Guerrero-Márquez C, Luquin MR, Rábano A. Variant Creutzfeldt-Jakob disease occurring in mother and son. J Neurol Neurosurg Psychiatry 2012;83:235–6.

    Article  PubMed  Google Scholar 

  17. Krasnianski A, Bartl M, Sanchez Juan PJ, Heinemann U, Meissner B, Varges D, et al. Fatal familial insomnia: clinical features and early identification. Ann Neurol 2008;63:658–61.

    Article  PubMed  Google Scholar 

  18. Cortelli P, Perani D, Montagna P, Gallassi R, Tinuper P, Provini F, et al. Pre-symptomatic diagnosis in fatal familial insomnia: serial neurophysiological and 18FDG-PET studies. Brain 2006;129:668–75.

    Article  PubMed  Google Scholar 

  19. Krasnianski A, Sanchez Juan P, Ponto C, Bartl M, Heinemann U, Varges D, et al. A proposal of new diagnostic pathway for fatal familial insomnia. J Neurol Neurosurg Psychiatry 2014;85:654–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Xing X, Zhang J, Zhu F, Ma L, Yin D, Jia W, et al. Comparison of diffusion-weighted MRI with 18F-fluorodeoxyglucose-positron emission tomography/CT and electroencephalography in sporadic Creutzfeldt-Jakob disease. J Clin Neurosci 2012;19:1354–7.

    Article  PubMed  Google Scholar 

  21. Minoshima S, Foster NL, Sima AA, Frey KA, Albin RL, Kuhl DE. Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol 2001;50:358–65.

    Article  CAS  PubMed  Google Scholar 

  22. Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 2007;130:2616–35.

    Article  PubMed  Google Scholar 

  23. Teune LK, Bartels AL, de Jong BM, Willemsen A, Eshuis SA, de Vries JJ, et al. Typical cerebral metabolic patterns in neurodegenerative brain diseases. Mov Disord 2010;25:2395–404.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the clinical and pathological data provided by the following collaborators: María del Carmen Guerrero (Department of Pathology, Hospital Universitario Fundación Alcorcón, Madrid, Spain), Alberto Rábano (Biobank, Fundación CIEN, Madrid, Spain), Juan José Zarranz (Department of Neurology, Hospital Universitario de Cruces, Baracaldo, Spain), Teresa Tuñón (Department of Pathology, Complejo Hospitalario de Navarra, Pamplona, Spain) and the staff of the Department of Neurology at Clínica Universidad de Navarra: Pablo Irimia, Jaime Gállego, Pau Pastor and César Viteri.

Compliance with ethical standards

Conflicts of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Arbizu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto, E., Domínguez-Prado, I., Riverol, M. et al. Metabolic patterns in prion diseases: an FDG PET voxel-based analysis. Eur J Nucl Med Mol Imaging 42, 1522–1529 (2015). https://doi.org/10.1007/s00259-015-3090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3090-x

Keywords

Navigation