Skip to main content

Advertisement

Log in

Principal component and volume of interest analyses in depressed patients imaged by 99mTc-HMPAO SPET: a methodological comparison

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Previous regional cerebral blood flow (rCBF) studies on patients with unipolar major depressive disorder (MDD) have analysed clusters of voxels or single regions and yielded conflicting results, showing either higher or lower rCBF in MDD as compared to normal controls (CTR). The aim of this study was to assess rCBF distribution changes in 68 MDD patients, investigating the data set with both volume of interest (VOI) analysis and principal component analysis (PCA). The rCBF distribution in 68 MDD and 66 CTR, at rest, was compared. Technetium-99m d,l-hexamethylpropylene amine oxime single-photon emission tomography was performed and the uptake in 27 VOIs, bilaterally, was assessed using a standardising brain atlas. Data were then grouped into factors by means of PCA performed on rCBF of all 134 subjects and based on all 54 VOIs. VOI analysis showed a significant group × VOI × hemisphere interaction (P<0.001). rCBF in eight VOIs (in the prefrontal, temporal, occipital and central structures) differed significantly between groups at the P<0.05 level. PCA identified 11 anatomo-functional regions that interacted with groups (P<0.001). As compared to CTR, MDD rCBF was relatively higher in right associative temporo-parietal-occipital cortex (P<0.01) and bilaterally in prefrontal (P<0.005) and frontal cortex (P<0.025), anterior temporal cortex and central structures (P<0.05 and P<0.001 respectively). Higher rCBF in a selected group of MDD as compared to CTR at rest was found using PCA in five clusters of regions sharing close anatomical and functional relationships. At the single VOI level, all eight regions showing group differences were included in such clusters. PCA is a data-driven method for recasting VOIs to be used for group evaluation and comparison. The appearance of significant differences absent at the VOI level emphasises the value of analysing the relationships among brain regions for the investigation of psychiatric disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d

Similar content being viewed by others

References

  1. Greden JF. The burden of recurrent depression: causes, consequences, and future prospects. J Clin Psychiatry 2001; 62 (Suppl 22):S5–S9.

    Google Scholar 

  2. Levitt AJ, Boyle MH, Joffe RT, Baumal Z. Estimated prevalence of the seasonal subtype of major depression in a Canadian community sample. Can J Psychiatry 2000; 45:650–654.

    CAS  PubMed  Google Scholar 

  3. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 4th edn. Washington DC: American Psychiatric Association, 1994.

  4. Drevets WC, Price JL, Simpson JR Jr, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386:824–827.

    CAS  PubMed  Google Scholar 

  5. Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 1998; 95:13290–13295.

    Article  CAS  PubMed  Google Scholar 

  6. Rajkowska G, Miguel-Hidalgo JJ, Wei J, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45:1085–1098.

    CAS  PubMed  Google Scholar 

  7. Ebermeier KP, Glabus MF, Prentice N, Ryman A, Goodwin GM. A voxel-based analysis of cerebral perfusion in dementia and depression of old age. Neuroimage 1998; 7:199–208.

    CAS  PubMed  Google Scholar 

  8. Drevets WC. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 2001; 11:240–249.

    CAS  PubMed  Google Scholar 

  9. Hickie I, Scott E, Naismith S, et al. Late-onset depression: genetic, vascular and clinical contributions. Psychol Med 2001; 31:1403–1412.

    CAS  PubMed  Google Scholar 

  10. Van den Berg MD, Oldehinkel AJ, Bouhuys AL, Brilman EI, Beekman AT, Ormel J. Depression in later life: three etiologically different subgroups. J Affect Disord 2001; 65:19–26.

    Article  PubMed  Google Scholar 

  11. Baxter LR Jr, Schwartz JM, Phelps ME, et al. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 1989; 46:243–250.

    CAS  PubMed  Google Scholar 

  12. Bench CJ, Friston KJ, Brown RG, Scott LC, Frackowiak RS, Dolan RJ. The anatomy of melancholia—focal abnormalities of cerebral blood flow in major depression. Psychol Med 1992; 22:607–615.

    CAS  PubMed  Google Scholar 

  13. Dolan RJ, Bench CJ, Brown RG, Scott LC, Friston KJ, Frackowiak RS. Regional cerebral blood flow abnormalities in depressed patients with cognitive impairment. J Neurol Neurosurg Psychiatry 1992; 55:768–773.

    CAS  PubMed  Google Scholar 

  14. Mazziotta JC, Phelps ME, Plummer D, Kuhl DE. Quantitation in positron emission computed tomography: 5. Physical–anatomical effects. J Comput Assist Tomogr 1981; 5:734–743.

    CAS  PubMed  Google Scholar 

  15. Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME. A functional anatomical study of unipolar depression. J Neurosci 1992; 12:3628–3641.

    CAS  PubMed  Google Scholar 

  16. Mentis MH, Krasuski J, Pietrini P. Cerebral glucose metabolism in late onset depression without cognitive impairment (abstract). Soc Neurosi 1995; 21:1736.

    Google Scholar 

  17. Ebert D, Ebmeier KP. The role of the cingulate gyrus in depression: from functional anatomy to neurochemistry. Biol Psychiatry 1996; 39:1044–1050.

    Article  CAS  PubMed  Google Scholar 

  18. Biver F, Goldman S, Delvenne V, et al. Frontal and parietal metabolic disturbances in unipolar depression. Biol Psychiatry 1994; 36:381–388.

    Article  CAS  PubMed  Google Scholar 

  19. Philpot MP, Banerjee S, Needham-Bennett H, Costa DC, Ell PJ.99mTc-HMPAO single photon emission tomography in late life depression: a pilot study of regional cerebral blood flow at rest and during a verbal fluency task. J Affect Disord 1993; 28:233–240.

    Article  CAS  PubMed  Google Scholar 

  20. Klemm E, Danos P, Grunwald F, Kasper S, Moller HJ, Biersack HJ. Temporal lobe dysfunction and correlation of regional cerebral blood flow abnormalities with psychopathology in schizophrenia and major depression—a study with single photon emission computed tomography. Psychiatry Res 1996; 68:1–10.

    Article  CAS  PubMed  Google Scholar 

  21. Vasile RG, Schwartz RB, Garada B, et al. Focal cerebral perfusion defects demonstrated by99mTc-hexamethylpropyleneamine oxime SPECT in elderly depressed patients. Psychiatry Res 1996; 67:59–70.

    Article  CAS  PubMed  Google Scholar 

  22. Baxter LR Jr, Phelps ME, Mazziotta JC, et al. Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry 1985; 42:441–447.

    Google Scholar 

  23. Ebmeier KP, Prentice N, Ryman A, et al. Temporal lobe abnormalities in dementia and depression: a study using high resolution single photon emission tomography and magnetic resonance imaging. J Neurol Neurosurg Psychiatry 1997; 63:597–604.

    CAS  PubMed  Google Scholar 

  24. Drevets WC, Spitznagel F, Raichle ME. Functional anatomical differences between major depressive subtypes (abstract). J Cereb Blood Flow Metab 1995; 15:93.

    Google Scholar 

  25. Abercrombie HC, Schaefer SM, Larson CL, et al. Metabolic rate in the right amygdala predicts negative affect in depressed patients. Neuroreport 1998; 9:3301–3307.

    CAS  PubMed  Google Scholar 

  26. Nikolaus S, Larisch R, Beu M, Vosberg H, Müller-Gartner HW. Diffuse cortical reduction of neuronal activity in unipolar major depression: a retrospective analysis of 337 patients and 321 controls. Nucl Med Commun 2000; 21:1119–1125.

    Google Scholar 

  27. Greitz T, Bohm C, Holte S, Eriksson L. A computerized brain atlas: construction, anatomical content, and some applications. J Comput Assist Tomogr 1991; 15:26–38.

    CAS  PubMed  Google Scholar 

  28. Friston KJ. Analysing brain images: principles and overview. In: Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC, eds. Human brain function. London: Academic Press; 1997:25–41.

  29. Mayberg HS. Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull 2003; 65:193–207.

    Article  PubMed  Google Scholar 

  30. Brott T, Adams HP Jr, Olinger CP, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke 1989; 20:864–870.

    CAS  PubMed  Google Scholar 

  31. Scandinavian Stroke Study Group. Multicenter trial of hemodilution in ischemic stroke: background and study protocol. Stroke 1985; 16:881–890.

    Google Scholar 

  32. Åsberg M, Montgomery S, Perris C, Schalling D, Sedvall G. A comprehensive psychopathological rating scale. Acta Psychiatr Scand 1978; 271 (Suppl):S5–S27.

    Google Scholar 

  33. Montgomery SA, Åsberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry 1979; 134:382–389.

    CAS  PubMed  Google Scholar 

  34. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12:189–198.

    CAS  PubMed  Google Scholar 

  35. Mathew RJ, Weinman ML, Mirabi M. Physical symptoms of depression. Br J Psychiatry 1981; 139:293–296.

    CAS  PubMed  Google Scholar 

  36. Corruble E, Guelfi JD. Pain complaints in depressed inpatients. Psychopathology 2000; 33:307–309.

    Article  CAS  PubMed  Google Scholar 

  37. Coulehan JL, Schulberg HC, Block MR, Zettler-Segal M. Symptom patterns of depression in ambulatory medical and psychiatric patients. J Nerv Ment Dis 1988; 176:284–288.

    CAS  PubMed  Google Scholar 

  38. Dewsnap P, Gomborone J, Libby G, Farthing M. The prevalence of symptoms of irritable bowel syndrome among acute psychiatric inpatients with an affective diagnosis. Psychosomatics 1996; 37:385–389.

    CAS  PubMed  Google Scholar 

  39. Yovell Y, Sackeim HA, Epstein DG, Prudic J, Devanand DP, McElhiney MC, Settembrino JM, Bruder GE. Hearing loss and asymmetry in major depression. J Neuropsychiatr Clin Neurosci 1995; 7:82–89.

    CAS  Google Scholar 

  40. Moldin SO, Scheftner WA, Rice JP, Nelson E, Knesevich MA, Akiskal H. Association between major depressive disorder and physical illness. Psychol Med 1993; 23:755–761.

    CAS  PubMed  Google Scholar 

  41. Chang L-T. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978; 25:638–643.

    Google Scholar 

  42. Thurfjell L, Bohm C, Bengtsson E. CBA—an atlas based software tool used to facilitate the interpretation of neuroimaging data. Comput Methods Programs Biomed 1995; 4:51–71.

    Article  Google Scholar 

  43. Thurfjell L, Bohm C, Greitz T, Eriksson L. Transformations and algorithms in a computerized brain atlas. IEEE Trans Nucl Sci 1993; 40:1187–1191.

    Google Scholar 

  44. Andersson JLR, Thurfjell L. Implementation and validation of a fully automatic system for intra- and inter-individual registration of PET brain scans. J Comput Assist Tomogr 1997; 21:136–144.

    CAS  PubMed  Google Scholar 

  45. Pagani M. Advances in brain SPECT. Methodological and human investigation. PhD Thesis. Stockholm: Karolinska Institutet, 2000.

  46. Systat 10. Statistics. SPSS, 2000.

  47. Dunteman GH. Principal component analysis. London: Sage, 1989.

  48. Houston AS, Kemp PM, Macleod MA. Optimization of factors affecting the state of normality of a medical image. Phys Med Biol 1996; 41:755–765.

    Article  CAS  PubMed  Google Scholar 

  49. Pagani M, Salmaso D, Jonsson C, et al. Brain regional blood flow as assessed by principal component analysis and99mTc-HMPAO SPET in healthy subjects at rest—normal distribution and effect of age and gender. Eur J Nucl Med Mol Imaging 2002; 29:67–75.

    Article  CAS  PubMed  Google Scholar 

  50. Sackeim HA. Functional brain circuits in major depression and remission. Arch Gen Psychiatry 2001; 58:649–650.

    Article  CAS  PubMed  Google Scholar 

  51. Gainotti G. Disorders of emotional behaviour. J Neurol 2001; 248:743–749.

    Article  CAS  PubMed  Google Scholar 

  52. Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 1995; 20:91–127.

    CAS  PubMed  Google Scholar 

  53. Shajahan PM, Glabus MF, Steele JD, Doris AB, Anderson K, Jenkins JA, Gooding PA, Ebmeier KP. Left dorso-lateral repetitive transcranial magnetic stimulation affects cortical excitability and functional connectivity, but does not impair cognition in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:945–954.

    Article  PubMed  Google Scholar 

  54. Cohen RM, Semple WE, Gross M, et al. Evidence for common alterations in cerebral glucose metabolism in major affective disorders and schizophrenia. Neuropsychopharmacology 1989; 2:241–254.

    CAS  PubMed  Google Scholar 

  55. Buchsbaum MS, Wu J, DeLisi LE, et al. Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness. J Affect Disord 1986; 10:137–152.

    Article  CAS  PubMed  Google Scholar 

  56. Trivedi H, Devous MD, Rush AJ. RCBF findings in major depression: pre- and post-treatment with fluoxetine (abstract). Am Coll Neuropharmacol 1994:149.

  57. Uytdenhoef P, Portelange P, Jacquy J, Charles G, Linkowski P, Mendlewicz J. Regional cerebral blood flow and lateralized hemispheric dysfunction in depression. Br J Psychiatry 1983; 143:128–132.

    CAS  PubMed  Google Scholar 

  58. Tutus A, Kibar M, Sofuoglu S, Basturk M, Gonul AS. A technetium-99m hexamethylpropylene amine oxime brain single-photon emission tomography study in adolescent patients with major depressive disorder. Eur J Nucl Med 1998; 25:601–606.

    Google Scholar 

  59. Rodriguez G, Warkentin S, Risberg J, Rosadini G. Sex differences in regional cerebral blood flow. J Cereb Blood Flow Metab 1988; 8:783–789.

    CAS  PubMed  Google Scholar 

  60. Van Laere K, Versijpt J, Audenaert K, et al.99mTc-ECD brain perfusion SPET: variability, asymmetry and effect of age and gender in healthy adults. Eur J Nucl Med 2001; 28:873–887.

    PubMed  Google Scholar 

  61. Ragland JD, Coleman AR, Gur RC, Glahn DC, Gur RE. Sex differences in brain-behavior relationships between verbal episodic memory and resting regional cerebral blood flow. Neuropsychologia 2000; 38:451–461.

    Article  CAS  PubMed  Google Scholar 

  62. Pagani M, Gardner A, Salmaso D, Sánchez-Crespo A, Jonsson C, Jacobsson H, Hällström T, Larsson SA. Effect of gender on cerebral hemispheres and lobes uptake in 183 subjects examined at rest by 99m-Tc-HMPAO SPET. Eur J Nuc Med 2003; 30 (Suppl 2):S198.

    Google Scholar 

  63. Videbech P, Ravnkilde B, Pedersen AR, Egander A, Landbo B, Rasmussen NA, Andersen F, Stodkilde-Jorgensen H, Gjedde A, Rosenberg R. The Danish PET/depression project: PET findings in patients with major depression. Psychol Med 2001; 31:1147–1158.

    Article  CAS  PubMed  Google Scholar 

  64. Gur RC, Turetsky BI, Matsui M, Yan M, Bilker W, Hughett P, Gur RE. Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J Neurosci 1999; 19:4065–4072.

    CAS  PubMed  Google Scholar 

  65. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 2000; 48:830–843.

    Google Scholar 

  66. Kennedy SH, Evans KR, Kruger S, Mayberg HS, Meyer JH, McCann S, Arifuzzman AI, Houle S, Vaccarino FJ. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry 2001; 158:899–905.

    CAS  PubMed  Google Scholar 

  67. Martin SD, Martin E, Rai SS, Richardson MA, Royall R. Brain blood flow changes in depressed patients treated with interpersonal psychotherapy or venlafaxine hydrochloride: preliminary findings. Arch Gen Psychiatry 2001; 58:641–648.

    Article  CAS  PubMed  Google Scholar 

  68. Davies J, Lloyd KR, Jones IK, Barnes A, Pilowsky LS. Changes in regional cerebral blood flow with venlafaxine in the treatment of major depression. Am J Psychiatry 2003; 160:374–376.

    Article  PubMed  Google Scholar 

  69. Andreasen NC, O’Leary DS, Flaum M, Nopoulos P, Watkins GL, Boles Ponto LL, Hichwa RD. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic naive patients. Lancet 1997; 349:1730–1734.

    Article  CAS  PubMed  Google Scholar 

  70. Sabri O, Erkwoh R, Schreckenberger M, Owega A, Sass H, Buell U. Correlation of positive symptoms exclusively to hyperperfusion or hypoperfusion of cerebral cortex in never-treated schizophrenics. Lancet 1997; 349:1735–1739.

    Article  CAS  PubMed  Google Scholar 

  71. Erkwoh R, Sabri O, Willmes K, Steinmeyer EM, Bull U, Sass H. Aspects of cerebral connectivity in schizophrenia. A comparative CBF study on treated schizophrenics before and after medication. Fortschr Neurol Psychiatr 1999; 67:318–326.

    CAS  PubMed  Google Scholar 

  72. Tylee A, Gastpar M, Lépine J-P, Mendlewicz J. Identification of depressed patient types in the community and their treatment needs: findings from the DEPRES II (Depression Research in European Society II) Survey. Int Clin Psychopharmacol 1999; 14:153–165.

    Google Scholar 

  73. Magni G, Caldieron C, Rigatti-Luchini S, Merskey H. Chronic musculoskeletal pain and depressive symptoms in the general population. An analysis of the 1st National Health and Nutrition Examination survey data. Pain 1990; 43:299–307.

    CAS  PubMed  Google Scholar 

  74. Drug VL, Costea F, Ciochina AD, Bradatan O, Tarasi I, Mitrica D, Stanciu C. Functional digestive disorders and the relationship with psychiatric diseases. Rev Med Chir Soc Med Nat Iasi 2002; 107:307–310.

    CAS  PubMed  Google Scholar 

  75. Axelsson A, Ringdahl A. Tinnitus—a study of its prevalence and characteristics. Br J Audiol 1989; 23:53–62.

    CAS  PubMed  Google Scholar 

  76. Hotopf M, Wessely S. Depression and chronic fatigue syndrome. In: Robertson MM, Katona CLE, eds. Depression and physical illness. Chichester: Wiley; 1997:499–522.

  77. Friston K, Holmes A, Worlsey K, Poline J, Frith C, Frackowiak R. Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping 1995; 2:189–210.

    Google Scholar 

  78. Bonne O, Louzoun Y, Aharon I, Krausz Y, Karger H, Lerer B, Bocher M, Freedman N, Chisin R. Cerebral blood flow in depressed patients: a methodological comparison of statistical parametric mapping and region of interest analyses. Psychiatry Res 2003; 122:49–57.

    Article  PubMed  Google Scholar 

  79. Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 1997; 9:471–481.

    CAS  PubMed  Google Scholar 

  80. Mazheri A, McIntosh AR, Seminowicz D, Maygberg H. Functional connectivity of the rostral cingulated predicts treatment response in unipolar depression. Biol Psychiatry 2002; 51:33S.

    Google Scholar 

Download references

Acknowledgements

This study was supported by grants from “Dipartimento per i Rapporti Internazionali, Reparto I”, Italian National Research Council (CNR), Italy; the Swedish Psychiatric Association, Lundbeckstiftelsen; the Swedish Medical Research Council (MFR); and the Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pagani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagani, M., Gardner, A., Salmaso, D. et al. Principal component and volume of interest analyses in depressed patients imaged by 99mTc-HMPAO SPET: a methodological comparison. Eur J Nucl Med Mol Imaging 31, 995–1004 (2004). https://doi.org/10.1007/s00259-004-1457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1457-5

Keywords

Navigation