Skip to main content

Advertisement

Log in

Catechin isolated from cashew nut shell exhibits antibacterial activity against clinical isolates of MRSA through ROS-mediated oxidative stress

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus causes severe infections and among all methicillin-resistant S. aureus (MRSA) remains a great challenge in spite of decade research of antibacterial compounds. Even though some synthetic antibiotics have been developed, they are not effective against MRSA, and hence, there is a search for natural, alternative and plant-based antibacterial compound. In this connection, catechin isolated from cashew nut shell was investigated for its antibacterial potential against MRSA. Catechin exhibited zone of inhibition (ZOI) and minimum inhibitory concentration (MIC) in a range of 15.1–19.5 mm and 78.1–156.2 μg/ml, respectively, against ATCC and clinical isolates of MRSA. Among all clinical isolates, clinical isolate-3 exhibited highest sensitivity to catechin. Catechin has arrested the growth of MRSA strains and also caused toxicity by membrane disruption which was illustrated by AO/EB fluorescence staining. Increased nucleic acid leakage (1.58–28.6-fold) and protein leakage (1.40–23.50-fold) was noticed in MRSA due to catechin treatment when compared to methicillin. Bacteria treated with catechin at its MIC showed 1.52-, 1.87- and 1.74-fold increase of ROS production in methicillin susceptible S. aureus (MSSA), MRSA and clinical isolate-3 strains, respectively, as compared to control. Superoxide dismutase (5.31–9.63 U/mg protein) and catalase (1573–3930 U/mg protein) were significantly decreased as compared to control in catechin-treated S. aureus. Thus, catechin exhibited antibacterial activity through oxidative stress by increased production of ROS and decreased antioxidant enzymes. Altogether results suggest that catechin is a promising lead compound with antibacterial potential against MRSA.

Key points

• Catechin was isolated and identified as active compound in cashew nut shell.

• Catechin exhibited antimicrobial activity against clinical isolates of MRSA.

• Bacterial cell wall damage was caused by catechin in MRSA strains.

• Catechin increased the oxidative stress in MRSA by intracellular ROS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ajiboye TO, Aliyu M, Isiaka I, Haliru FZ, Ibitoye OB, Uwazie JN, Muritala HF, Bello SA, Yusuf II, Mohammed AO (2016) Contribution of reactive oxygen species to (+)-catechin-mediated bacterial lethality. Chem Biol Interact 258:276–287. https://doi.org/10.1016/j.cbi.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  • Ajileye OO, Obuotor EM, Akinkunmi EO, Aderogba MA (2015) Isolation and characterization of antioxidant and antimicrobial compounds from Anacardium occidentale L. (Anacardiaceae) leaf extract. J King Saud Univ Sci 27:244–252

    Google Scholar 

  • Alshatwi AA, Hasan TN, Alqahtani AM, Syed NA, Shafi G, Al-Assaf AH, Al-Khalifa AS (2014) Delineating the anti-cytotoxic and anti-genotoxicpotentials of catechin hydrate against cadmiumtoxicity in human peripheral blood lymphocytes. Environ Toxicol Pharmacol 38:653–662

    CAS  PubMed  Google Scholar 

  • Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA (2017) Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants. https://doi.org/10.3390/plants6040042

  • Alzoreky NS, Nakahara K (2003) Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int J Food Microbiol 80:223–230

    CAS  Google Scholar 

  • Amber R, Adnan M, Tariq A, Khan SN, Mussarat S, Hashem A, Al-Huqail AA, Al-Arjani ABF, Allah EFA (2018) Antibacterial activity of selected medicinal plants of northwest Pakistan traditionally used against mastitis in livestock. Saudi J Biol Sci 25:154–161

    PubMed  Google Scholar 

  • Aronson JK (2015) Meyler’s side effects of drugs. The International Encyclopedia of Adverse Drug Reaction and Interactions, 16th edition, available online at https://www.elsevier.com/books/meylers-side-effects-of-drugs/aronson/978-0-444-53717-1

  • Basile A, Rigano D, Loppi S, Santi AD, Nebbioso A, Sorbo S, Conte B, Paoli L, Ruberto FD, Molinari AM, Altucci L, Bontempo P (2015) Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. Int J Mol Sci 16:7861–7875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beavers WN, Skaar EP (2016) Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus Pathog Dis 74: DOI: https://doi.org/10.1093/femspd/ftw060

  • Borges A, Ferreira C, Saavedra MJ, Simoes M (2013) Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist 19:256–265. https://doi.org/10.1089/mdr.2012.0244

    Article  CAS  PubMed  Google Scholar 

  • Bouarab-Chibane L, Forquet V, Lanteri P, Clement Y, Akkari LL, Oulahal N, Degraeve P, Bordes C (2019) Antibacterial properties of polyphenols: characterization and QSAR (quantitative structure activity relationship) models. Front Microbiol 10: Article No. 829

  • Broccardo CJ, Mahaffey S, Schwarz J, Wruck L, David G, Schlievert PM, Reisdorph NA, Leung DYM (2010) Comparative proteomic profiling of patients with atopic dermatitis based on history of eczema herpeticum infection and Staphylococcus aureus colonization. J Allergy Clin Immunol 127:186–193

    Google Scholar 

  • Cai JY, Li J, Hou YN, Ma K, Yao GD, Liu WW, Hayashi T, Itoh K, Tashiro S, Onodera S, Ikejima T (2018) Concentration-dependent dual effects of silibinin on kanamycin-induced cells death in Staphylococcus aureus. Biomed Pharmacother 102:782–791

    CAS  PubMed  Google Scholar 

  • Celenza G, Segatore B, Setacci D, Bellio P, Brisdelli F, Piovano M, Garbarino JA, Nicoletti M, Perilli M, Amicosante G (2012) In vitro antimicrobial activity of pannarin alone and in combination with antibiotics against methicillin-resistant Staphylococcus aureus clinical isolates. Phytomed 19:596–602

    CAS  Google Scholar 

  • CEPCI (2018) The cashew export promotion Council of India, cashew Bhavan, Mundakkal west, India. Accessed from online: http://cashewindia.org/statistics on 01-04-2020

  • Chakraborty S, Afaq N, Singh N, Majumdar S (2018) Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus. J Integr Med 16:350–357

    PubMed  Google Scholar 

  • Chan BCL, Margaret IP, Lau CBS, Lui SL, Jolivalt C, Ganem-Elbaz C, Litaudon M, Reiner NE, Gong H, See RH, Fung KP, Leung PC (2011) Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J Ethnopharmacol 137:767–773

    CAS  PubMed  Google Scholar 

  • Cheraghi S, Pourgholi L, Shafaati M, Fesharaki SH, Jalali A, Nosrati R, Boroumand MA (2017) Analysis of virulence genes and accessory gene regulator (agr) types among methicillin-resistant Staphylococcus aureus strains in Iran. J Glob Antimicrob Res 10:315–320

    Google Scholar 

  • Cheruku SP, Ramalingayya GV, Chamallamudi MR, Biswas S, Nandakumar K, Nampoothiri M, Gourishetti K, Kumar N (2018) Catechin ameliorates doxorubicin-induced neuronal cytotoxicity in vitro and episodic memory deficit in vivo in Wistar rats. Cytotechnology 70:245–259

    CAS  PubMed  Google Scholar 

  • Chew YL, Mahadi AM, Wong KM, Goh JK (2018) Anti-methicillin resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. and their mechanism of antibacterial activity. BMC Complement Altern Med 18: DOI: https://doi.org/10.1186/s12906-018-2137-5

  • Cho YS, Schiller NL, Oh KH (2008) Antibacterial effects of green tea polyphenols on clinical isolates of methicillin-resistant Staphylococcus aureus. Curr Microbiol 57:542–546

    CAS  PubMed  Google Scholar 

  • Cunha LCS, De Morais SAL, De Aquino FJT, Chang R, De Oliveira A, Martins MM, Martins CHG, Sousa LCF, Barros TT, Da Silva CV, Do Nascimento EA (2017) Bioassay-guided fractionation and antimicrobial and cytotoxic activities of Cassia bakeriana extracts. Rev Bras 27:91–98

    CAS  Google Scholar 

  • Deleo FR, Chambers HF (2009) Re-emergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119:2464–2474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demoliner F, Policarpi PB, Vasconcelos LFL, Vitali L, Micke GA, Block JM (2018) Sapucaia nut (Lecythis pisonis Cambess) and its by-products: a promising and underutilized source of bioactive compounds. Part II: Phenolic compounds profile. Food Res Int 112:434–442. https://doi.org/10.1016/j.foodres.2018.06.050

    Article  CAS  PubMed  Google Scholar 

  • Diederen BMW, Duijn IV, Willemse P, Kluytmans JAJW (2006) In vitro activity of daptomycin against methicillin-resistant Staphylococcus aureus including heterogeneously glycopeptide-resistant strains. Antimicrob Agents Chemother 50:3189–3191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diekema DJ, Pfaller MA, Shortridge D, Zervos M, Jones RN (2019) Twenty-year trends in antimicrobial susceptibilities among Staphylococcus aureus from the sentry: antimicrobial surveillance program. Open Forum Infect Dis 6:S47–S53

    PubMed  PubMed Central  Google Scholar 

  • Esquenazi D, Wigg MD, Miranda MMFS, Rodrigues HM, Tostes JBF, Rozental S, Da Silva AJR, Alviano CS (2002) Antimicrobial and antiviral activities of polyphenolics from Cocos nucifera Linn. (Palmae) husk fiber extract. Res Microbiol 153:647–652

    CAS  PubMed  Google Scholar 

  • Etame RE, Mouokeu RS, Pouaha CLC, Kenfack IV, Tchientcheu R, Assam JPA, Poundeu FSM, Tiabou AT, Etoa FX, Kuiate JR, Ngane RAN (2018) Effect of fractioning on antibacterial activity of Enantia chlorantha Oliver (Annonaceae) methanol extract and mode of action. Evid Based Complement Alternat Med Article ID 4831593

  • FAOSTAT (2020) Statistical data published by food and agricultural organization (FAO), Rome, Italy. Accessed from online http://www.fao.org/faostat/en/#data/QC on 10-03-2020

  • Foster TJ (2017) Antibiotic resistance in Staphylococcus aureus: current status and future prospects. FEMS Microbiol Rev 41:430–449

    CAS  PubMed  Google Scholar 

  • Girija S, Duraipandiyan V, Kuppusamy PS, Gajendran H, Rajagopal R (2014) Chromatographic characterization and GC-MS evaluation of the bioactive constituents with antimicrobial potential from the pigmented ink of Loligo duvauceli. Int Sch Res Notices Article ID 820745

  • Gomes FMS, Xavier JC, Santos JFS, Matos YMLS, Tintino SR, Freitas TS, Coutinho HDM (2017) Evaluation of antibacterial and modifying action of catechin antibiotics in resistant strains. Microb Pathog 115:175–178. https://doi.org/10.1016/j.micpath.2017.12.058

    Article  CAS  PubMed  Google Scholar 

  • Gomes S, Finotelli PV, Sardela VF, Pereira HMG, Santelli RE, Freire AS, Torres AG (2019) Microencapsulated Brazil nut (Bertholletia excelsa) cake extract powder as an added-value functional food ingredient. LWT Food Sci Technol 116: Article ID 108495

  • Gowrishankar S, Thenmozhi R, Balaji K, Pandian SK (2013) Emergence of methicillin-resistant, vancomycin-intermediate Staphylococcus aureus among patients associated with group A Streptococcal pharyngitis infection in southern India. Infect Genet Evol 14:383–389

    PubMed  Google Scholar 

  • Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429. https://doi.org/10.1016/j.foodcont.2014.05.047

    Article  CAS  Google Scholar 

  • Hamad FB, Mubofu EB (2015) Potential biological applications of bio-based anacardic acids and their derivatives. Int J Mol Sci 16:8569–8590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haq A, Siddiqi M, Batool SZ, Islam A, Khan A, Khan D, Khan S, Khan H, Shah AA, Hasan F, Ahmed S, Badshah M (2019) Comprehensive investigation on the synergistic antibacterial activities of Jatropha curcas pressed cake and seed oil in combination with antibiotics AMB Express 9: DOI: https://doi.org/10.1186/s13568-019-0793-6

  • Haraguchi H, Tanimoto K, Tamura Y, Mizutani K, Kinoshita T (1998) Mode of antimicrobial action of retrochalcones from Glycyrrhiza inflate. Phytochem 48:125–129

    CAS  Google Scholar 

  • Harkins CP, Pichon B, Doumith M, Parkhill J, Westh H, Tomasz A, De Lencastre H, Bentley SD, Kearns AM, Holden MTG (2017) Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice Genome Biol 18: https://doi.org/10.1186/s13059-017-1252-9

  • Himejima M, Kubo I (1991) Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J Agric Food Chem 39:418–421

    CAS  Google Scholar 

  • Hirose Y, Yamaoka H, Nakayama M (1990) Oxidation product of (+)-catechin from lipid peroxidation. Agric Biol Chem 54:567–569

    CAS  Google Scholar 

  • Hollands A, Corriden R, Gysler G, Dahesh S, Olson J, Ali SR, Kunkel MT, Lin AE, Forli S, Newton AC, Kumar GB, Nair BG, Perry JJP, Nizet V (2016) Natural product anacardic acid from cashew nut shell stimulates neutrophil extracellular trap production and bactericidal activity. J Biol Chem 291:13964–13973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain RM, Abdullah NF, Amom Z (2016) Killing of Staphylococcus aureus by allylprocatechol is potentiated by induction of intracellular oxidative stress and inhibition of catalase activity. J Integr Med 14: DOI: https://doi.org/10.1016/S2095-4964(16)60279-0

  • Hussain RM, Razak ZNRA, Saad WMM, Mustakim M (2017) Mechanism of antagonistic effects of Andrographis paniculata methanolic extract against Staphylococcus aureus. Asian Pac J Trop Med 10:685–695

    PubMed  Google Scholar 

  • ICMR (2017) Indian Council of Medical Research, AMR surveillance network report. Accessed from online on 12-01-2020

  • Jin S, Eerdunbayaer Doi A, Kuroda T, Zhang G, Hatano T, Chen G (2012) Polyphenolic constituents of Cynomorium songaricum Rupr. and antibacterial effect of polymeric proanthocyanidin on methicillin-resistant Staphylococcus aureus. J Agric Food Chem 60:7297–7305

    CAS  PubMed  Google Scholar 

  • Johari MA, Khong HY (2019) Total phenolic content and antioxidant and antibacterial activities of Pereskia bleo. Adv Pharmacol Sci Article ID 7428593

  • Kanehashi S, Masuda R, Yokoyama K, Kanamoto T, Nakashima H, Miyakoshi T (2015) Development of a cashew nut shell liquid (CNSL)-based polymer for antibacterial activity. J Appl Polym Sci. https://doi.org/10.1002/app.42725

  • Khademi F, Ghanbari F, Mellmann A, Najafzadeh MJ, Khaledi A (2016) Phylogenetic relationships among Staphylococcus aureus isolated from clinical samples in Mashhad, Iran. J Infect Public Health 9:639–644

    PubMed  Google Scholar 

  • Khodade VS, Chandra MS, Banerjee A, Lahiri S, Pulipeta M, Rangarajan R, Chakrapani H (2014) Bio-reductively activated reactive oxygen species (ROS) generators as MRSA inhibitors. ACS Med Chem Lett 5:777–781. https://doi.org/10.1021/ml5001118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi SD, Malachowa N, De Leo FR (2015) Pathogenesis of Staphylococcus aureus abscesses. Am J Pathol 185:1518–1527

    PubMed  PubMed Central  Google Scholar 

  • Kong C, Neoh HM, Nathan S (2016) Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins 8. https://doi.org/10.3390/toxins8030072

  • Kouakou K, Panda SK, Yang MR, Lu JG, Jiang ZH, Puyvelde LV, Luyten W (2019) Isolation of antimicrobial compounds from Cnestis ferruginea Vahl ex. DC (Connaraceae) leaves through bioassay-guided fractionation. Front Microbiol 10: Article 705

  • Kulkarni AP, Nagvekar VC, Veeraraghavan B, Warrier AR, Deepak TS, Ahdal J, Jain R (2019) Current perspectives on treatment of gram-positive infections in India: what is the way forward? Interdiscip Perspect Infect Dis 2019:1–8. https://doi.org/10.1155/2019/7601847

    Article  CAS  Google Scholar 

  • Kumburu HH, Sonda T, Leekitcharoenphon P, Zwetselaar MV, Lukjancenko O, Alifrangis M, Lund O, Mmbaga BT, Kibiki G, Aarestrup FM (2018) Hospital epidemiology of methicillin-resistant Staphylococcus aureus in a tertiary care hospital in Moshi, Tanzania, as determined by whole genome sequencing. Bio Med Res Int Article ID 2087693

  • Lee DG, Jung HJ, Woo ER (2005) Antimicrobial property of (+)-lyoniresinol-3α-O-β-D-glucopyranoside isolated from the root bark of Lycium chinense Miller against human pathogenic microorganisms. Arch Pharm Res 28:1031–1036

    CAS  PubMed  Google Scholar 

  • Lee KA, Kim KT, Nah SY, Chung MS, Cho SW, Paik HD (2011) Antimicrobial and antioxidative effects of onion peel extracted by the subcritical water. Food Sci Biotechnol 20:543–548

    Google Scholar 

  • Lemos ASO, Campos LM, Melo L, Guedes MCMR, Oliveira LG, Silva TP, Melo RCN, Rocha VN, Aguiar JAK, Apolonio ACM, Scio E, Fabri RL (2018) Antibacterial and antibiofilm activities of psychorubrin, a pyrano-naphthoquinone isolated from Mitracarpus frigidus (Rubiaceae). Front Microbiol 9:724

    PubMed  PubMed Central  Google Scholar 

  • Li G, Wang X, Xu Y, Zhang B, Xia X (2013) Antimicrobial effect and mode of action of chlorogenic acid on Staphylococcus aureus. Eur Food Res Technol 238:589–596. https://doi.org/10.1007/s00217-013-2140-5

    Article  CAS  Google Scholar 

  • Liu S, Mai B, Jia M, Lin D, Zhang J, Liu Q, Wang P (2020) Synergistic antimicrobial effects of photodynamic antimicrobial chemotherapy and gentamicin on Staphylococcus aureus and multidrug-resistant Staphylococcus aureus. Photodiagn Photodyn Ther 30:101703. https://doi.org/10.1016/j.pdpdt.2020.101703

    Article  CAS  Google Scholar 

  • Llarrull LI, Fisher JF, Mobashery S (2009) Molecular basis and phenotype of methicillin resistance in Staphylococcus aureus and insights into new β-lactams that meet the challenge. Antimicrob Agents Chemother 53:4051–4063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mantzourani I, Bontsidis CA, Plessas S, Alexopoulos A, Theodoridou E, Tsigalou C, Voidarou C, Douganiotis G, Kazakos SL, Stavropoulou E, Bezirtzoglou E (2019) Comparative susceptibility study against pathogens using fermented cranberry juice and antibiotics. Front Microbiol 10: Article ID 1294

  • Martins D, McKay G, Sampathkumar G, Khakimova M, English AM, Nguyen D (2018) Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 115:9797–9802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Micota B, Sadowska B, Podsedek A, Paszkiewicz M, Sosnowska D, Rozalska B (2016) Is it true that plant-derived polyphenols are always beneficial for the human? In vitro study on Leonurus cardiaca extract properties in the context of the pathogenesis of Staphylococcus aureus infections. J Med Microbiol 65:1171–1181

    CAS  PubMed  Google Scholar 

  • Miklasinska M, Kepa M, Wojtyczka RD, Idzik D, Dziedzic A, Wasik TJ (2016) Catechin hydrate augments the antibacterial action of selected antibiotics against Staphylococcus aureus clinical strains Mol 21: DOI: https://doi.org/10.3390/molecules21020244

  • Mujeeb F, Bajpai P, Pathak N (2014) Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. Bio Med Res Int Article ID 497606

  • Nguyen HM, Graber CJ (2010) Limitations of antibiotic options for invasive infections caused by methicillin-resistant Staphylococcus aureus: is combination therapy the answer? J Antimicrob Chemother 65:24–36

    CAS  PubMed  Google Scholar 

  • Othman L, Sleiman A, Abdel-Massih RM (2019) Antimicrobial activity of polyphenols and alkaloids in Middle Eastern plants. Front Microbiol 10: Article ID 911

  • Ozdal T, Ceylan FD, Eroglu N, Kaplan M, Olgun EO, Capanoglu E (2019) Investigation of antioxidant capacity, bioaccessibility and LC-MS/MS phenolic profile of Turkish propolis. Food Res Int 122:528–536

    CAS  PubMed  Google Scholar 

  • Palacios L, Rosado H, Micol V, Rosato AE, Bernal P, Arroyo R, Grounds H, Anderson JC, Stabler RA, Taylor PW (2014) Staphylococcal phenotypes induced by naturally occurring and synthetic membrane-interactive polyphenolic beta-lactam resistance modifiers. Plos One 9: Article ID 93830

  • Paramashivappa R, Kumar PP, Vithayathil PJ, Rao AS (2001) Novel method for the isolation of major phenolic constituents from cashew (Anacardium occidentale L.) nut shell liquid. J Agric Food Chem 49:2548–2551

    CAS  PubMed  Google Scholar 

  • Parasa LS, Tumati SR, Kumar LC, Chigurupati SP, Rao GS (2011) In vitro antimicrobial activity of cashew (Anacardium occidentale L.) nut shell liquid against methicillin resistant Staphylococcus aureus (MRSA) clinical isolates. Int J Pharm Pharm Sci 3:436–440

    CAS  Google Scholar 

  • Peacock SJ, Paterson GK (2015) Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem 84:577–601

    CAS  PubMed  Google Scholar 

  • Pinheiro FC, Bortolotto VC, Araujo SM, Poetini MR, Sehn CP, Neto JSS, Zeni G, Prigol M (2018) Antimicrobial effect of 2-phenylethynyl-butyltellurium in Escherichia coli and its association with oxidative stress. J Microbiol Biotechnol 28:1209–1216

    CAS  PubMed  Google Scholar 

  • Pinho MG, De Lencastre H, Tomasz A (2001) An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant Staphylococci. Proc Natl Acad Sci U S A 98:10886–10891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash A, Vadivel V, Banu SF, Nithyanand P, Lalitha C, Brindha P (2018a) Evaluation of antioxidant and antimicrobial properties of solvent extracts of agro-food by-products (cashew nut shell, coconut shell and groundnut hull). J Agric Nat Res 52:451–459

    Google Scholar 

  • Prakash A, Nithyanand P, Vadivel V (2018b) In vitro antibacterial activity of nut by-products against foodborne pathogens and their application in fresh-cut fruit model. J Food Sci Technol 55:4304–4310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash A, Vadivel V, Rubini D, Nithyanand P (2019) Antibacterial and antibiofilm activities of linalool nanoemulsions against Salmonella Typhimurium. Food Biosci 28:57–65

    CAS  Google Scholar 

  • Radulovic NS, Blagojevic PD, Stojanovic-Radic ZZ, Stojanovic NM (2013) Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr Med Chem 20:932–952

    CAS  PubMed  Google Scholar 

  • Ren X, An P, Zhai X, Wang S, Kong Q (2019) The antibacterial mechanism of pterostilbene derived from Xinjiang wine grape: a novel apoptosis inducer in Staphyloccocus aureus and Escherichia coli. LWT Food Sci Technol 101:100–106

    CAS  Google Scholar 

  • Reygaert WC (2018) Green tea catechins: their use in treating and preventing infectious diseases. Bio Med Res Int Article ID 9105261

  • Rico R, Bullo M, Salas-Salvado J (2015) Nutritional composition of raw fresh cashew (Anacardium occidentale L.) kernels from different origin. Food Sci Nutr 4:329–338

    PubMed  PubMed Central  Google Scholar 

  • Sajeevan SE, Chatterjee M, Paul V, Baranwal G, Kumar VA, Bose C, Banerji A, Nair BG, Prasanth BP, Biswas R (2018) Impregnation of catheters with anacardic acid from cashew nut shell prevents Staphylococcus aureus biofilm development. J Appl Microbiol 125:1286–1295. https://doi.org/10.1111/jam.14040

    Article  CAS  PubMed  Google Scholar 

  • Sanchez E, Garcia S, Heredia N (2010) Extracts of edible and medicinal plants damage membranes of Vibrio cholera. Appl Environ Microbiol 76(20):6888–6894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva V, Igrejas G, Falco V, Santos TP, Torres C, Oliveira AMP, Pereira JE, Amaral JS, Poeta P (2018) Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 92:516–522. https://doi.org/10.1016/j.foodcont.2018.05.031

    Article  CAS  Google Scholar 

  • Sinsinwar S, Vadivel V (2020) ROS mediated cytotoxicity exhibited by cashewnut shell extract coated AgNPs against Staphylococcus aureus isolated from milk. J Clust Sci. https://doi.org/10.1007/s10876-020-01812-9

  • Sinsinwar S, Sarkar MK, Suriya KR, Nithyanand P, Vadivel V (2018) Use of agricultural waste (coconut shell) for the synthesis of silver nanoparticles and evaluation of their antibacterial activity against selected human pathogens. Microb Pathog 124:30–37

    CAS  PubMed  Google Scholar 

  • Sirk TW, Brown EF, Friedman M, Sum AK (2009) Molecular binding of catechins to biomembranes: relationship to biological activity. J Agric Food Chem 57:6720–6728

    CAS  PubMed  Google Scholar 

  • Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, Nadarajan R, Brodie EL, Lynch SV (2015) Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS One. https://doi.org/10.1371/journal.pone.0117617

  • Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G, Gillmann L, Papon N, Bouchara JP, Fleury MJJ (2017) Microbial antioxidant defense enzymes. Microb Pathog 110:56–65

    CAS  PubMed  Google Scholar 

  • Sugumar S, Nirmala J, Ghosh V, Anjali H, Mukherjee A, Chandrasekaran N (2012) Bio-based nanoemulsion formulation, characterization and antibacterial activity against food-borne pathogens. J Basic Microbiol 52:1–10

    Google Scholar 

  • Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations and management. Clin Microbiol Rev 28:603–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya H, Sato M, Miyazaki T, Fujiwara S, Tanigaki S, Ohyama M, Tanaka T, Iinuma M (1996) Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 50:27–34

    CAS  PubMed  Google Scholar 

  • Wang D, Jiang Y, Sun-Waterhouse DX, Zhai H, Guan H, Rong X, Li F, Yu JC, Li DP (2020) MicroRNA-based regulatory mechanisms underlying the synergistic antioxidant action of quercetin and catechin in H2O2-stimulated HepG2 cells: roles of BACH1 in Nrf2-dependent pathways. Free Radic Biol Med 153:122–131

    CAS  PubMed  Google Scholar 

  • Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM (2016) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centres for disease control and prevention 2011-2014. Infect Control Hosp Epidemiol 37:1288–1301. https://doi.org/10.1017/ice.2016.174

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Chu Z, Ruan Z, Wang X, Dai T, Hu X (2018) Changes of intracellular porphyrin, reactive oxygen species, and fatty acids profiles during inactivation of methicillin-resistant Staphylococcus aureus by antimicrobial blue light. Front Physiol 9: Article ID 1658

  • Wu SC, Yang ZQ, Liu F, Peng WJ, Qu SQ, Li Q, Song XB, Zhu K, Shen JZ (2019) Antibacterial effect and mode of action of flavonoids from licorice against methicillin-resistant Staphylococcus aureus. Front Microbiol 10:2489

    PubMed  PubMed Central  Google Scholar 

  • Wu J, Li B, Xiao W, Hu J, Xie J, Yuan J, Wang L (2020) Longistylin A, a natural stilbene isolated from the leaves of Cajanus cajan , exhibits significant anti-MRSA activity. Int J Antimicrob Agent 55: Article ID 105821

  • Xu HX, Lee SF (2004) The antibacterial principle of Caesalpina sappan. Phytother Res 18:647–651

    CAS  PubMed  Google Scholar 

  • Yow MD, Taber LH, Barrett FF, Mintz AA, Blankinship GR, Clark GE, Clark DJ (1976) A ten year assessment of methicillin-associated side effects. Pediatrics 58:329–334

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to DST-FIST instrumentation facility (SR/FST/ETI-331/2013) and also grateful to the Management of SASTRA Deemed University, Thanjavur, Tamil Nadu, for their encouragement and support.

Funding

The research project was financially supported by SERB, Government of India (Start-up Grant No. YSS/2014/000332).

Author information

Authors and Affiliations

Authors

Contributions

SS has performed the experiments, acquisition and analysis of data, and writing the manuscript draft. VV has contributed in supervision, conceptualisation, designed the experiments, analyzed the data, project administration and manuscript writing.

Corresponding author

Correspondence to Vellingiri Vadivel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals or humans performed by any of the authors. Authors obtained approval from the Institutional Bio-safety Committee (IBC Ref. No. SASTRA/IBSC/9/2018 dt. 27-04-2018) for working with human pathogen MRSA.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinsinwar, S., Vadivel, V. Catechin isolated from cashew nut shell exhibits antibacterial activity against clinical isolates of MRSA through ROS-mediated oxidative stress. Appl Microbiol Biotechnol 104, 8279–8297 (2020). https://doi.org/10.1007/s00253-020-10853-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10853-z

Keywords

Navigation