Skip to main content
Log in

Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: in vitro and ex vivo experiments

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Over the last years, the global production and trade of kiwifruit has been severely impacted by Pseudomonas syringae pv. actinidiae (Psa), a phytopathogen that causes a disease in kiwifruit plants known as bacterial canker. The available treatments for this disease are still scarce, with the most common involving frequently spraying the orchards with disinfectants, copper-based bactericides and/or antibiotics. Moreover, these treatments should be avoided due to their high toxicity to the environment and promotion of bacterial resistance. Phage therapy may be an alternative approach to inactivate Psa. The present study investigated the potential application of the already commercially available bacteriophage (or phage) ϕ6 to control Psa infections. The inactivation of Psa was assessed in vitro, using liquid culture medium, and ex vivo, using artificially contaminated kiwifruit leaves with two biovar 3 (a highly aggressive pathogen) strains (Psa CRA-FRU 12.54 and Psa CRA-FRU 14.10). In the in vitro experiments, the phage ϕ6 was effective against both strains (maximum reduction of 2.2 and 1.9 CFU/mL for Psa CRA-FRU 12.54 and Psa CRA-FRU 14.10, respectively). In the ex vivo tests, the decrease was lower (maximum reduction 1.1 log and 1.8 CFU/mL for Psa CRA-FRU 12.54 and Psa CRA-FRU 14.10, respectively). The results of this study suggest that the commercially available phage ϕ6 can be an effective alternative to control Psa infections in kiwifruit orchards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abuladze T, Li M, Menetrez MY, Dean T, Senecal A, Sulakvelidze A (2008) Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl Environ Microbiol 74:6230–6238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adams MH (1959) Bacteriophages. Interscience Publishers, John Wiley and Sons Inc, New York

    Google Scholar 

  • Almeida A, Cunha Â, Gomes NCM, Alves E, Costa L, Faustino MAF (2009) Phage therapy and photodynamic therapy : low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar Drugs 7:268–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Altimira F, Yanez C, Bravo G, Gonzalez M, Rojas LA, Seeger M (2012) Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of Central Chile. BMC Microbiol 12:1–12

    Google Scholar 

  • Bae YJ, Wu J, Lee HJ, Jo EJ, Murugaiyan S, Chung E, Lee SW (2012) Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. J Microbiol Biotechnol 22:1613–1620

    PubMed  Google Scholar 

  • Balcão VM, Vieira MC, Malcata FX (1996) Adsorption of protein from several commercial lipase preparations onto a hollow-fiber membrane module. Biotechnol Prog 12:164–172

    PubMed  Google Scholar 

  • Balcão VM, Oliveira TA, Xavier Malcata F (1998) Stability of a commercial lipase from Mucor javanicus: kinetic modelling of pH and temperature dependencies. Biocatal Biotransfor 16:45–66

    Google Scholar 

  • Balestra GM, Renzi M, Mazzaglia A (2010) First report of bacterial canker of Actinidia deliciosa caused by Pseudomonas syringae pv. actinidiae in Portugal. New Dis Rep 22:10

    Google Scholar 

  • Balestra GM, Renzi M, Mazzaglia A (2011) First report of Pseudomonas syringae pv. actinidiae on kiwifruit plants in Spain. New Dis Rep 24:10

    Google Scholar 

  • Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A, King P, Jackson LE (2003) Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis 87:949–954

    CAS  PubMed  Google Scholar 

  • Baolin S, Chenghua W, Jing Z, Luxi L, Qiguo Z (2016) Geographical distributions of Pseudomonas syringae pv. actinidiae in China. Plant Prot 42:146–150

    Google Scholar 

  • Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications, 1st edn. Wiley Interscience. The University of Michigan, Volume 181 of Wiley Series in Probability and Statistics - Applied Probability and Statistics Section Series, 365 pages

  • Bender CL, Alarcon-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C (2018) RNA phage biology in a metagenomic era. Viruses 10:1–17

    Google Scholar 

  • Cameron A, Sarojini V (2014) Pseudomonas syringae pv. actinidiae: chemical control , resistance mechanisms and possible alternatives. Plant Pathol 63:1–11

    CAS  Google Scholar 

  • Corrado L, González-Ballesteros N, Scortichini M, Rodríguez-Argüelles MC, Gallego PP, Barreal ME (2018) Comparison of the effectiveness of several commercial products and two new copper complexes to control Pseudomonas syringae pv. actinidiae. In: Acta Horticulturae. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 247–252

    Google Scholar 

  • Costa P, Pereira C, Gomes A, Almeida A (2019) Efficiency of single phage suspensions and phage cocktail in the inactivation of Escherichia coli and Salmonella Typhimurium: an in vitro preliminary study. Microorganisms 7:94

    CAS  PubMed Central  Google Scholar 

  • Czajkowski R, Ozymko Z, Lojkowska E (2014) Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘D. solani’). Plant Pathol 63:758–772

    Google Scholar 

  • Duarte J, Pereira C, Moreirinha C, Salvio R, Lopes A, Wang D, Almeida A (2018) New insights on phage efficacy to control Aeromonas salmonicida in aquaculture systems: an in vitro preliminary study. Aquaculture 495:970–982

    Google Scholar 

  • Eman OH, Afaf Z (2014) Biocontrol of halo blight of bean caused by Pseudomonas phaseolicola. Int J Virol 10:235–242

    Google Scholar 

  • Everett KR, Cohen D, Pushparajah IPS, Vergara MJ, Curtis CL, Larsen NJ, Jia Y (2012) Heat treatments to kill Pseudomonas syringae pv. actinidiae on contaminated pollen. New Zeal Plant Prot 65:8–18

    Google Scholar 

  • Ferrante P, Scortichini M (2010) Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on yellow kiwifruit (Actinidia chinensis) in Central Italy. Plant Pathol 59:954–962

    CAS  Google Scholar 

  • Firrao G, Torelli E, Polano C, Ferrante P, Ferrini F, Martini M, Marcelletti S, Scortichini M, Ermacora P (2018) Genomic structural variations affecting virulence during clonal expansion of Pseudomonas syringae pv. actinidiae biovar 3 in Europe. Front Microbiol 9:1–13

    Google Scholar 

  • Flaherty JE, Jones J, Harbaugh BK, Somodi GC, Jackson LE (2000) Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. Hortscience 35:882–884

    Google Scholar 

  • Fong K, LaBossiere B, Switt A, Delaquis P, Goodridge L, Levesque R, Danyluk M, Wang S (2017) Characterization of four novel bacteriophages isolated from British Columbia for control of non-typhoidal Salmonella in vitro and on sprouting alfalfa seeds. Front Microbiol 8:2193

    PubMed  PubMed Central  Google Scholar 

  • Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 2012:1–11

    Google Scholar 

  • Frampton R, Taylor C, Holguin Moreno A, Visnovsky S, Petty N, Pitman A, Fineran P (2014) Identification of bacteriophages for biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Appl Environ Microbiol 80:2216–2228

    PubMed  PubMed Central  Google Scholar 

  • Fujikawa T, Sawada H (2019) Genome analysis of Pseudomonas which produces the phytotoxins, phaseolotoxin and coronatine. Sci Rep 9:1–11

    CAS  Google Scholar 

  • Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T, Fujie M, Yamada T (2011) Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 77:4155–4162

    CAS  PubMed  PubMed Central  Google Scholar 

  • García R, Latz S, Romero J, Higuera G, García K, Bastías R (2019) Bacteriophage production models: an overview. Front Microbiol 10:1–7

    Google Scholar 

  • Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14

    CAS  PubMed  Google Scholar 

  • Guroo I, Wani S, Wani S, Ahmad M, Mir S, Masoodi F (2017) A review of production and processing of kiwifruit. J Food Process Technol 8:1–6

    Google Scholar 

  • Hwang MSH, Morgan RL, Sarkar SF, Wang PW, Guttman DS (2005) Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl Environ Microbiol 71:5182–5191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jesus V, Martins D, Branco T, Valerio N, Neves MGPMS, Faustino MAF, Reis L, Barreal E, Gallego PP, Almeida A (2018) An insight into the photodynamic approach versus copper formulations in the control of Pseudomonas syringae pv. actinidiae in kiwi plants. Photochem Photobiol Sci 17:180–191

    CAS  PubMed  Google Scholar 

  • Kalpage MD, De Costa DM (2014) Isolation of bacteriophages and determination of their efficiency in controlling Ralstonia solanacearum causing bacterial wilt of tomato. Trop Agric Res 26:140–151

    Google Scholar 

  • Kim M-H, Park S-W, Kim Y-K (2011) Bacteriophages of Pseudomonas tolaasii for the biological control of brown blotch disease. J Korean Soc Appl Biol Chem 54:99–104

    Google Scholar 

  • Koh YJ, Park S, Lee D (1996) Characteristics of bacterial canker of kiwifruit occurring in Korea and its control by trunk injection. Korean J Plant Pathol 12:324–330

    Google Scholar 

  • Koh YJ, Kim GH, Jung JS, Lee YS, Hur JS (2010) Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea. New Zeal J Crop Hortic Sci 38:275–282

    Google Scholar 

  • Lindberg H, McKean K, Wang I (2014) Phage fitness may help predict phage therapy efficacy. Bacteriophage 4:e964081

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhu T, Fan F, Shao B (2013) Occurrence and pathogen identification of kiwifruit bacterial canker in Sichuan. Hubei Agric Sci 52:4937–4941

    Google Scholar 

  • Maleki S, Maleki-Zanjani B, Gallego PP (2018) Kiwifruit status in Iran: management and production. Acta Hortic 1218:39–44

    Google Scholar 

  • Mäntynen S, Sundberg L-R, Poranen MM (2018) Recognition of six additional cystoviruses: Pseudomonas virus phi6 is no longer the sole species of the family Cystoviridae. Arch Virol 163:1117–1124

    PubMed  Google Scholar 

  • Marcelletti S, Ferrante P, Petriccione M, Firrao G, Scortichini M (2011) Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. PLoS One 6:e27297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martins D, Mesquita MQ, Neves MGPMS, Faustino MAF, Reis L, Figueira E, Almeida A (2018) Photoinactivation of Pseudomonas syringae pv. actinidiae in kiwifruit plants by cationic porphyrins. Planta 248:409–421

    CAS  PubMed  Google Scholar 

  • Mateus L, Costa L, Silva YJ, Pereira C, Cunha A, Almeida A (2014) Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture 424–425:167–173

    Google Scholar 

  • McCann HC, Rikkerink EHA, Bertels F, Fiers M, Lu A, Rees-George J, Andersen MT, Gleave AP, Haubold B, Wohlers MW, Guttman DS, Wang PW, Straub C, Vanneste J, Rainey PB, Templeton MD (2013) Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog 9:e1003503

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCann HC, Li L, Liu Y, Li D, Pan H, Zhong C, Rikkerink EHA, Templeton MD, Straub C, Colombi E, Rainey PB, Huang H (2017) Origin and evolution of the kiwifruit canker pandemic. Genome Biol Evol 9:932–944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monk AB, Rees CD, Barrow P, Hagens S, Harper DR (2010) Bacteriophage applications: where are we now? Lett Appl Microbiol 51:363–369

    CAS  PubMed  Google Scholar 

  • Moye ZD, Woolston J, Sulakvelidze A (2018) Bacteriophage applications for food production and processing. Viruses 10:1–22

    Google Scholar 

  • Nguyen HTD, Yoon S, Kim M-H, Kim Y-K, Yoon M-Y, Cho Y-H, Lim Y, Shin SH, Kim D-E (2012) Characterization of bacteriophage ϕPto-bp6g, a novel phage that lyses Pseudomonas tolaasii causing brown blotch disease in mushrooms. J Microbiol Methods 91:514–519

    CAS  PubMed  Google Scholar 

  • Oliveira H, São-José C, Azeredo J (2018) Phage-derived peptidoglycan degrading enzymes: challenges and future prospects for in vivo therapy. Viruses 10:292

    PubMed Central  Google Scholar 

  • Park J, Lim J-A, Yu J-G, Oh C-S (2018) Genomic features and lytic activity of the bacteriophage PPPL-1 effective against Pseudomonas syringae pv. actinidiae, a cause of bacterial canker in kiwifruit. J Microbiol Biotechnol 28:1542–1546

    CAS  PubMed  Google Scholar 

  • Pereira C, Silva YJ, Santos AL, Cunha Â, Gomes NCM, Almeida A (2011) Bacteriophages with potential for inactivation of fish pathogenic bacteria: Survival , host specificity and effect on bacterial community structure. Mar Drugs 9:2236–2255

    PubMed  PubMed Central  Google Scholar 

  • Pereira C, Moreirinha C, Rocha RJM, Calado R, Romalde JL, Nunes ML, Almeida A (2016a) Application of bacteriophages during depuration reduces the load of Salmonella Typhimurium in cockles. Food Res Int 90:73–84

    CAS  PubMed  Google Scholar 

  • Pereira C, Moreirinha C, Lewicka M, Almeida P, Clemente C, Cunha Â, Delgadillo I, Romalde JL, Nunes ML, Almeida A (2016b) Bacteriophages with potential to inactivate Salmonella Typhimurium: use of single phage suspensions and phage cocktails. Virus Res 220:179–192

    CAS  PubMed  Google Scholar 

  • Pereira C, Moreirinha C, Teles L, Rocha RJM, Calado R, Romalde JL, Nunes ML, Almeida A (2017a) Application of phage therapy during bivalve depuration improves Escherichia coli decontamination. Food Microbiol 61:102–112

    PubMed  Google Scholar 

  • Pereira C, Moreirinha C, Lewicka M, Almeida P, Clemente C, Romalde JL, Nunes ML, Almeida A (2017b) Characterization and in vitro evaluation of new bacteriophages for the biocontrol of Escherichia coli. Virus Res 227:171–182

    CAS  PubMed  Google Scholar 

  • Pinheiro LAM, Pereira C, Frazão C, Balcão VM, Almeida A (2019) Efficiency of phage ϕ6 for biocontrol of Pseudomonas syringae pv. syringae: an in vitro preliminary study. Microorganisms 7:286

    PubMed Central  Google Scholar 

  • Pires D, Oliveira H, Melo L, Sillankorva S, Azeredo J (2016) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 100:2141–2151

    CAS  PubMed  Google Scholar 

  • Poulter RTM, Ho J, Handley T, Taiaroa G, Butler MI (2018) Comparison between complete genomes of an isolate of Pseudomonas syringae pv. actinidiae from Japan and a New Zealand isolate of the pandemic lineage. Sci Rep 8:1–13

    CAS  Google Scholar 

  • Rios A, Moutinho C, Pinto F, Del Fiol F, Jozala A, Chaud M, Vila M, Teixeira J, Balcão V (2016) Alternatives to overcoming bacterial resistances: state-of-the-art. Microbiol Res 191:51–80

    CAS  PubMed  Google Scholar 

  • Santos SB, Carvalho C, Azeredo J, Ferreira EC (2014) Population dynamics of a Salmonella lytic phage and its host: implications of the host bacterial growth rate in modelling. PLoS One 9:e102507

    PubMed  PubMed Central  Google Scholar 

  • Scortichini M (1994) Occurrence of Pseudomonas syringae pv. actinidiae on kiwifruit in Italy. Plant Pathol 43:1035–1038

    Google Scholar 

  • Shao Y, Wang I-N (2008) Bacteriophage adsorption rate and optimal lysis time. Genetics 180:471–482

    PubMed  PubMed Central  Google Scholar 

  • Silva Y, Costa L, Pereira C, Mateus C, Cunha Â, Calado R, Gomes N, Pardo M, Hernandez I, Almeida A (2014) Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production. PLoS One 9:e114197

    PubMed  PubMed Central  Google Scholar 

  • Silva Y, Moreirinha C, Pereira C, Costa L, Rocha RJM, Cunha Â, Gomes NCM, Calado R, Almeida A (2016) Biological control of Aeromonas salmonicida infection in juvenile Senegalese sole (Solea senegalensis) with phage AS-A. Aquaculture 450:225–233

    Google Scholar 

  • Soffer N, Woolston J, Li M, Das C, Sulakvelidze A (2017) Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods. PLoS One 12:e0175256

    PubMed  PubMed Central  Google Scholar 

  • Stuer-Lauridsen B, Janzen T, Schnabl J, Johansen E (2003) Identification of the host determinant of two prolate-headed phages infecting Lactococcus lactis. Virology 309:10–17

    CAS  PubMed  Google Scholar 

  • Takikawa Y, Serizawa S, Ichikawa T, Tsuyumu S, Goto M (1989) Pseudomonas syringae pv. actinidae pv. nov.: the causal bacterium of canker of kiwifruit in Japan. Jpn J Phytopathol 55:437–444

    Google Scholar 

  • Vanneste J (2012) Pseudomonas syringae pv. actinidiae (Psa): a threat to the New Zealand and global kiwifruit industry. New Zeal J Crop Hortic Sci 40:265–267

    Google Scholar 

  • Vanneste J, Yu J, Cornish D, Tanner D, Windner R, Chapman J, Taylor R, Mackay J, Dowlut S (2013) Identification, virulence, and distribution of two biovars of Pseudomonas syringae pv. actinidiae in New Zealand. Plant Dis 97:708–719

    CAS  PubMed  Google Scholar 

  • Vidaver AK, Koski RK, Van Etten JL (1973) Bacteriophage phi6: a lipid-containing virus of Pseudomonas phaseolicola. J Virol 11:799–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira A, Silva YJ, Cunha A, Gomes NCM, Ackermann H-W, Almeida A (2012) Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments. Eur J Clin Microbiol Infect Dis 31:3241–3249

    CAS  PubMed  Google Scholar 

  • Wei H, Cheng RH, Berriman J, Rice WJ, Stokes DL, Katz A, Morgan DG, Gottlieb P (2009) Three-dimensional structure of the enveloped bacteriophage Φ12: an incomplete T = 13 lattice is superposed on an enclosed T = 1 shell. PLoS One 4:e6850

    PubMed  PubMed Central  Google Scholar 

  • Wickner RB (1993) Double-stranded RNA virus replication and packaging. J Biol Chem 268:3797–3800

    CAS  PubMed  Google Scholar 

  • Wilstermann A, Schrader G, Kehlenbeck H, Robinet C (2017) Potential spread of kiwifruit bacterial canker (Pseudomonas syringae pv. actinidiae) in Europe. EPPO Bull 47:255–262

    Google Scholar 

  • Yang Y, Lu S, Shen W, Zhao X, Shen M, Tan Y, Li G, Li M, Wang J, Hu F, Le S (2016) Characterization of the first double-stranded RNA bacteriophage infecting Pseudomonas aeruginosa. Sci Rep 6:38795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Lim J, Song Y, Heu S, Kim G, Koh Y, Oh C (2016) Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. J Microbiol Biotechnol 26:385–393

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks are also due to the Department of Biology and University of Aveiro where this research work was carried out.

Funding

FCT/MCTES provided financial support to CESAM (UID/AMB/50017/2019), through national funds. Carla Pereira was supported by a Junior Research contract (CEEC Individual/03974/2017) financed by the Portuguese Foundation for Science and Technology (FCT). Project funding by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil) (BPE fellowship Ref. No. 2018/05522-9, Project PsaPhageKill, granted to Victor M. Balcão) is hereby gratefully acknowledged. This work also received support from CNPq, National Council for Scientific and Technological Development Brazil, in the form of Research Productivity (PQ) fellowships granted to Victor M. Balcão (Refs. No. 306113/2014-7 and 308208/2017-0).

Author information

Authors and Affiliations

Authors

Contributions

Larindja A. M. Pinheiro, Carla Pereira and Victor M. Balcão performed the experiments. Larindja A. M. Pinheiro, Victor M. Balcão and Carla Pereira prepared the paper. M. Esther Barreal, Pedro Pablo Gallego revised the paper and contributed with Psa strains. Adelaide Almeida supervised the work, prepared and revised the paper and contributed with reagents and analysis tools.

Corresponding authors

Correspondence to Victor M. Balcão or Adelaide Almeida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, L.A.M., Pereira, C., Barreal, M.E. et al. Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: in vitro and ex vivo experiments. Appl Microbiol Biotechnol 104, 1319–1330 (2020). https://doi.org/10.1007/s00253-019-10301-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10301-7

Keywords

Navigation