Skip to main content
Log in

Advances in acrylamide bioproduction catalyzed with Rhodococcus cells harboring nitrile hydratase

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acrylamide is an important bulk chemical used for producing polyacrylamide, which is widely applied in diverse fields, such as enhanced oil recovery and water treatment. Acrylamide production with a superior biocatalyst, free-resting Rhodococcus cells containing nitrile hydratase (NHase), has been proven to be simple but effective, thereby becoming the main method adopted in industry to date. Under the harsh industrial conditions, however, NHase-containing Rhodococcus cells in a natural state are prone to deactivation. Thus, multiple genetic strategies able to evolve recombinant Rhodococcus biocatalysts at either the enzyme or cell level have been reported. While most of the methods on enzyme engineering concentrate on NHase stability enhancement by strengthening the flexible sites, Rhodococcus cell engineering with various methods can enhance both the NHase activity and stability as well. Developing some new types of reactors, especially the microreactor, is also an effective way to improve the hydration process efficiency. Compared with the conventional stirred tank reactor, the membrane dispersion microreactor can enhance the heat and mass transfer in the hydration process with Rhodococcus cells as biocatalysts, thereby significantly improving the productivity of the acrylamide bioproduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asano Y, Fujishiro K, Tani Y, Yamada H (1982) Aliphatic nitrile hydratase from Arthrobacter sp. J-1 purification and characterization. Agric Biol Chem 46(5):1165–1174

    CAS  Google Scholar 

  • Brodkin HR, Novak WRP, Milne AC, Alejandro DJA, Karabacak NM, Goldberg IG, Agar JN, Payne MS, Petsko GA, Mary Jo O (2011) Evidence of the participation of remote residues in the catalytic activity of Co-type nitrile hydratase from Pseudomonas putida. Biochemistry 50(22):4923–4935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Yu H, Liu C, Liu J, Shen Z (2013) Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. J Biotechnol 164(2):354–362

    Google Scholar 

  • Chen Y, Jiao S, Wang M, Chen J, Yu H (2018) A novel molecular chaperone GroEL2 from Rhodococcus ruber and its fusion chimera with nitrile hydratase for co-enhanced activity and stability. Chem Eng Sci 192:235–243

    CAS  Google Scholar 

  • Cheng Z, Cui W, Xia Y, Peplowski L, Zhou Z (2017) Modulation of nitrile hydratase regioselectivity towards dinitriles by tailoring the substrate binding pocket residues. Chemcatchem 10:449–458

    Google Scholar 

  • Cui Y, Cui W, Liu Z, Zhou L, Kobayashi M, Zhou Z (2014) Improvement of stability of nitrile hydratase via protein fragment swapping. Biochem Biophys Res Commun 450(1):401–408

    CAS  PubMed  Google Scholar 

  • de Carvalho CCCR (2019) Adaptation of Rhodococcus to organic solvents. In: Alvarez HM (ed) Biology of Rhodococcus. Springer International Publishing, Cham, pp 103–135

    Google Scholar 

  • de Carvalho CCCR, Fatal V, Alves SS, Da Fonseca MMR (2007) Adaptation of Rhodococcus erythropolis cells to high concentrations of toluene. Appl Microbiol Biotechnol 76(6):1423–1430

    CAS  PubMed  Google Scholar 

  • de Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82(2):311–320

    CAS  PubMed  Google Scholar 

  • de Carvalho CCCR, Fischer MA, Kirsten S, Würz B, Wick LY, Heipieper HJ (2016) Adaptive response of Rhodococcus opacus PWD4 to salt and phenolic stress on the level of mycolic acids. AMB Express 6(1):66

    PubMed  PubMed Central  Google Scholar 

  • DeLorenzo DM, Rottinghaus AG, Henson WR, Moon TS (2018) Molecular toolkit for gene expression control and genome modification in Rhodococcus opacus PD630. ACS Synth Biol 7(2):727–738

    CAS  PubMed  Google Scholar 

  • Elvira KS, Solvas XC, Wootton RC, Demello AJ (2013) The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat Chem 5(11):905–915

    CAS  PubMed  Google Scholar 

  • Guo M, Yang L, Li J, Jiao S, Wang Y, Luo G, Yu H (2018) Effects of interface adsorption of Rhodococcus ruber TH3 cells on the biocatalytic hydration of acrylonitrile to acrylamide. Bioprocess Biosyst Eng 41(7):931–938

    CAS  PubMed  Google Scholar 

  • Hartl FU, Martin J (1996) Molecular chaperones in cellular protein folding. Nature 381(6583):571–580

    CAS  PubMed  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332

    CAS  PubMed  Google Scholar 

  • Hayato T, Chiaki M, Jun O, Noriyuki I, Michio S (2014a) Rhodococcus rhodochrous ATCC12674 becomes alkane-tolerant upon GroEL2 overexpression and survives in the n-octane phase in two phase culture. Microbes Environ 29(4):431–433

    Google Scholar 

  • Hayato T, Jun O, Takao Y, Shujiro O, Mutsuyasu N, Noriyuki I, Michio S (2014b) Enhanced translocation and growth of Rhodococcus erythropolis PR4 in the alkane phase of aqueous-alkane two phase cultures were mediated by GroEL2 overexpression. Microbes Environ 29(4):346–352

    Google Scholar 

  • Hopmann KH (2014) Full reaction mechanism of nitrile hydratase: a cyclic intermediate and an unexpected disulfide switch. Inorg Chem 53(6):2760–2762

    CAS  PubMed  Google Scholar 

  • Illner S, Hofmann C, Löb P, Kragl U (2014) A falling-film microreactor for enzymatic oxidation of glucose. ChemCatChem 6(6):1748–1754

    CAS  Google Scholar 

  • Jiao S, Chen J, Yu H, Shen Z (2017) Tuning and elucidation of the colony dimorphism in Rhodococcus ruber associated with cell flocculation in large scale fermentation. Appl Microbiol Biotechnol 101(16):6321–6332

    CAS  PubMed  Google Scholar 

  • Jiao S, Yu H, Shen Z (2018) Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression. New Biotechnol 44:41–49

    CAS  Google Scholar 

  • Kang MS, Han SS, Kim MY, Kim BY, Huh JP, Kim HS, Lee JH (2014) High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production. Appl Microbiol Biotechnol 98(10):4379–4387

    CAS  PubMed  Google Scholar 

  • Karande R, Schmid A, Buehler K (2016) Applications of multiphasic microreactors for biocatalytic reactions. Org Process Res Dev 20(2):361–370

    CAS  Google Scholar 

  • Kayanuma M, Shoji M, Yohda M, Odaka M, Shigeta Y (2016) Catalytic mechanism of nitrile hydratase subsequent to cyclic intermediate formation: a QM/MM study. J Phys Chem B 120(13):3259–3266

    CAS  PubMed  Google Scholar 

  • Kim S-H, Oriel P (2000) Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enzym Microb Technol 27(7):492–501

    CAS  Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1992) Enzymatic synthesis of acrylamide: a success story not yet over. Trends Biotechnol 10(11):402–408

    CAS  PubMed  Google Scholar 

  • Komeda H, Kobayashi M, Shimizu S (1996) Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proc Natl Acad Sci U S A 93(9):4267–4272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu S, Bhangale AS, Wallace WE, Flynn KM, Guttman CM, Gross RA, Beers KL (2011) Continuous flow enzyme-catalyzed polymerization in a microreactor. J Am Chem Soc 133(15):6006–6011

    CAS  PubMed  Google Scholar 

  • Lavrov KV, Shemyakina AO, Grechishnikova EG, Novikov AD, Derbikov DD, Kalinina TI, Yanenko AS (2018) New cblA gene participates in regulation of cobalt-dependent transcription of nitrile hydratase genes in Rhodococcus rhodochrous. Res Microbiol 169(4–5):227–236

    CAS  PubMed  Google Scholar 

  • Lee CY, Choi SK, Chang HN (1993) Bench-scale production of acrylamide using the resting cells of Brevibacterium sp. CH2 in a fed-batch reactor. Enzym Microb Technol 15(11):979–984

    CAS  Google Scholar 

  • Lee SY, Kim HU, Chae TU, Cho JS, Kim JW, Shin JH, Kim DI, Ko Y-S, Jang WD, Jang Y-S (2019) A comprehensive metabolic map for production of bio-based chemicals. Nat Catal 2(1):18–33

    CAS  Google Scholar 

  • Leonova TE, Astaurova OB, Ryabchenko LE, Yanenko AS (2000) Nitrile hydratase of Rhodococcus. Appl Biochem Biotechnol 88(1):231–241

    CAS  Google Scholar 

  • Li J, Chen J, Wang Y, Luo G, Yu H (2014) Hydration of acrylonitrile to produce acrylamide using biocatalyst in a membrane dispersion microreactor. Bioresour Technol 169:416–420

    CAS  PubMed  Google Scholar 

  • Li J, Liu J, Chen J, Wang Y, Luo G, Yu H (2015a) Multiple reuses of Rhodococcus ruber TH3 free cells to produce acrylamide in a membrane dispersion microreactor. Bioresour Technol 187:198–204

    CAS  PubMed  Google Scholar 

  • Li J, Yang L, Ding X, Chen J, Wang Y, Luo G, Yu H (2015b) Visual study of mass transfer characterization in the process of biological catalytic hydration of acrylonitrile using pendant drop method. RSC Adv 5(96):79164–79171

    CAS  Google Scholar 

  • Li J, Chen Y, Guo M, Wang Y, Xu J, Luo G, Yu H (2016) Using microchannels to visually investigate the formation and dissolution of acrylonitrile droplets in a bio-hydration system. Chem Eng Sci 152:239–247

    CAS  Google Scholar 

  • Li J, Guo M, Jiao S, Wang Y, Luo G, Yu H (2017) A kinetic study of the biological catalytic hydration of acrylonitrile to acrylamide. Chem Eng J 317:699–706

    CAS  Google Scholar 

  • Liang Y, Jiao S, Wang M, Yu H, Shen Z (2019) Overexpression of epoxide hydrolase in Rhodococcus ruber with high robustness for the synthesis of chiral epichlorohydrin. Process Biochem 79:49–56

    CAS  Google Scholar 

  • Liang Y, Jiao S, Wang M, Yu H, Shen Z (2020) A CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH. Metab Eng 57:13–22

    CAS  PubMed  Google Scholar 

  • Liu J, Yu H, Shen Z (2008) Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation. J Mol Graph Model 27(4):529–535

    PubMed  Google Scholar 

  • Liu Y, Cui W, Liu Z, Cui Y, Xia Y, Kobayashi M, Zhou Z (2014) Enhancement of thermo-stability and product tolerance of Pseudomonas putida nitrile hydratase by fusing with self-assembling peptide. J Biosci Bioeng 118(3):249–252

    CAS  PubMed  Google Scholar 

  • Ma Y, Yu H (2012) Engineering of Rhodococcus cell catalysts for tolerance improvement by sigma factor mutation and active plasmid partition. J Ind Microbiol Biotechnol 39(10):1421–1430

    CAS  PubMed  Google Scholar 

  • Ma Y, Yu H, Pan W, Liu C, Zhang S, Shen Z (2010) Identification of nitrile hydratase-producing Rhodococcus ruber TH and characterization of an amiE-negative mutant. Bioresour Technol 101(1):285–291

    CAS  PubMed  Google Scholar 

  • Martinkova L, Uhnakova B, Patek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35(1):162–177

    CAS  PubMed  Google Scholar 

  • Nagasawa T, Shimizu H, Yamada H (1993) The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl Microbiol Biotechnol 40(2–3):189–195

    CAS  Google Scholar 

  • Okamoto S, Eltis LD (2007) Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Mol Microbiol 65(3):828–838

    CAS  PubMed  Google Scholar 

  • Pei X, Wang J, Wu Y, Zhen X, Tang M, Wang Q, Wang A (2018) Evidence for the participation of an extra α-helix at β-subunit surface in the thermal stability of Co-type nitrile hydratase. Appl Microbiol Biotechnol 102(18):7891–7900

    CAS  PubMed  Google Scholar 

  • Prasad S, Bhalla TC (2010) Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv 28(6):725–741

    CAS  PubMed  Google Scholar 

  • Ryabchenko LE, Podchernyaev DA, Kotlova EK, Yanenko AS (2006) Cloning the amidase gene from Rhodococcus rhodochrous M8 and its expression in Escherichia coli. Russ J Genet 42(8):886–892

    CAS  Google Scholar 

  • Rzeznicka K, Schätzle S, Böttcher D, Klein J, Bornscheuer UT (2010) Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterisation. Appl Microbiol Biotechnol 85(5):1417–1425

    CAS  PubMed  Google Scholar 

  • Shahar A, Melamed-Frank M, Kashi Y, Shimon L, Adir N (2011) The dimeric structure of the Cpn60.2 chaperonin of Mycobacterium tuberculosis at 2.8Å reveals possible modes of function. J Mol Biol 412(2):192–203

    CAS  PubMed  Google Scholar 

  • Stojkovič G, Žnidaršič-Plazl P (2012) Continuous synthesis of l-malic acid using whole-cell microreactor. Process Biochem 47(7):1102–1107

    Google Scholar 

  • Sun Y, Yu H, Sun X, Shen Z (2010) Bi-steady state reaction kinetics of nitrile hydratase in free resting cells. CIESC J 61(7):1783–1789

    CAS  Google Scholar 

  • Sun J, Yu H, Chen J, Luo H, Shen Z (2016a) Ammonium acrylate biomanufacturing by an engineered Rhodococcus ruber with nitrilase overexpression and double-knockout of nitrile hydratase and amidase. J Ind Microbiol Biotechnol 43(12):1631–1639

    CAS  PubMed  Google Scholar 

  • Sun W, Zhu L, Chen X, Wu L, Zhou Z, Liu Y (2016b) The stability enhancement of nitrile Hydratase from Bordetella petrii by swapping the C-terminal domain of β subunit. Appl Biochem Biotechnol 178(8):1481–1487

    CAS  PubMed  Google Scholar 

  • Supreetha K, Rao SN, Srividya D, Anil HS, Kiran S (2019) Advances in cloning, structural and bioremediation aspects of nitrile hydratases. Mol Biol Rep:1–13

  • Tang L, Yang J, Chen J, Zhang J, Yu H, Shen Z (2019) Design of salt-bridge cyclization peptide tags for stability and activity enhancement of enzymes. Process Biochem 81:39–47

    CAS  Google Scholar 

  • Tian Y, Chen J, Yu H, Shen Z (2016) Overproduction of the Escherichia coli chaperones GroEL-GroES in Rhodococcus ruber improves the activity and stability of cell catalysts harboring a nitrile hydratase. J Microbiol Biotechnol 26:337–346

    CAS  PubMed  Google Scholar 

  • Tudorascu M, Oprea S, Marculescu AD, Popovici M, Tudorascu S (2009) A new process for acrylamide synthesis by enzymatic hydrolysis of acrylonitrile in disperse system. Rev Chim 60:197–200

    CAS  Google Scholar 

  • Velankar H, Clarke KG, du Preez R, Cowan DA, Burton SG (2010) Developments in nitrile and amide biotransformation processes. Trends Biotechnol 28(11):561–569

    CAS  PubMed  Google Scholar 

  • Wang YJ, Zheng YG, Xue JP, Shen YC (2007) Characterization of nitrile hydratation catalysed by Nocardia sp. 108. World J Microbiol Biotechnol 23(3):355–362

    Google Scholar 

  • Wang M, Jie C, Yu H, Shen Z (2018) Improving stress tolerance and cell integrity of Rhodococcus ruber by overexpressing small-shock-protein Hsp16 of Rhodococcus. J Ind Microbiol Biotechnol 45(10):929–938

    CAS  PubMed  Google Scholar 

  • Watanabe I, Satoh Y, Enomoto K (2006) Screening, isolation and taxonomical properties of microorganisms having acrylonitrile-hydrating activity. J Agric Chem Soc Jpn 51(12):3193–3199

    Google Scholar 

  • Watts P, Haswell SJ (2005) The application of micro reactors for organic synthesis. Chem Soc Rev 34:235–246

    CAS  PubMed  Google Scholar 

  • Wenda S, Illner S, Mell A, Kragl U (2011) Industrial biotechnology—the future of green chemistry? Green Chem 13(11):3007–3047

    CAS  Google Scholar 

  • Wu S, Fallon RD, Payne MS (1997) Over-production of stereoselective nitrile hydratase from Pseudomonas putida 5B in Escherichia coli : activity requires a novel downstream protein. Appl Microbiol Biotechnol 48(6):704–708

    CAS  PubMed  Google Scholar 

  • Xia Y, Cui W, Cheng Z, Peplowski L, Liu Z, Kobayashi M, Zhou Z (2018) Improving the thermostability and catalytic efficiency of the subunit-fused nitrile hydratase by semi-rational engineering. ChemCatChem 10(6):1370–1375

    CAS  Google Scholar 

  • Xie S, Sun S, Lin F, Li M, Pu Y, Cheng Y, Xu B, Liu Z, da Costa SL, Dale BE (2019) Mechanism-guided design of highly efficient protein secretion and lipid conversion for biomanufacturing and biorefining. Adv Sci 1801980

  • Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ, Pesesky MW, Foston M, Dantas G, Moon TS (2016) Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res 44(5):2240–2254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Huang H (2014) Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol Adv 32(2):308–315

    CAS  PubMed  Google Scholar 

  • Yu H, Shi Y, Luo H, Tian Z-L, Zhu Y-Q, Shen Z-Y (2006) An over expression and high efficient mutation system of a cobalt-containing nitrile hydratase. J Mol Catal B Enzym 43(1):80–85

    CAS  Google Scholar 

  • Yu H, Jiao S, Zhang J, Shen Z (2017a) An engineered nitrile hydratase and its application. CN Patent 107177581A

  • Yu H, Jiao S, Shen Z (2017b) Genetic strategies to engineer recombinant strains for acrylamide production using free resting cells as biocatalysts. Biotechnol Bus 6:52–58

    Google Scholar 

  • Yu H, Jiao S, Wang M, Liang Y, Tang L (2019) Biodegradation of nitriles by Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus. Springer International Publishing, Cham, pp 173–202

    Google Scholar 

  • Zheng RC, Zheng YG, Shen YC (2009) Acrylamide, microbial production by nitrile hydratase. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley-Blackwell, Oxford, pp 25–36

    Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program (2018YFA0902200; 2018YFA0901700) and the National Natural Science Foundation (No. 21776157 and No. 21476126) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, S., Li, F., Yu, H. et al. Advances in acrylamide bioproduction catalyzed with Rhodococcus cells harboring nitrile hydratase. Appl Microbiol Biotechnol 104, 1001–1012 (2020). https://doi.org/10.1007/s00253-019-10284-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10284-5

Keywords

Navigation