Skip to main content
Log in

Degradation of plant arabinogalactan proteins by intestinal bacteria: characteristics and functions of the enzymes involved

Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Arabinogalactan proteins (AGPs) are complex plant proteoglycans that function as dietary fiber utilized by human intestinal bacteria such as Bifidobacterium and Bacteroides species. However, the degradative mechanism is unknown because of the complexity of sugar chains of AGPs as well as variation among plant species and organs. Recently, AGP degradative enzymes have been characterized in Bifidobacterium and Bacteroides species. In this review, we summarize the characteristics and functions of AGP degradative enzymes in human intestinal bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Aalbers F, Turkenburg JP, Davies GJ, Dijkhuizen L, Lammerts van Bueren A (2015) Structural and functional characterization of a novel family GH115 4-O-methyl-α-glucuronidase with specificity for decorated arabinogalactans. J Mol Biol 427:3935–3946

    Article  CAS  PubMed  Google Scholar 

  • Bell A, Walton G (2018) In vitro fermentation of gum acacia – impact on the faecal microbiota. Int J Food Sci Nutr 69:696–704

    Article  CAS  PubMed  Google Scholar 

  • Brecker L, Wicklein D, Moll H, Fuchs EC, Becker WM, Petersen A (2005) Structural and immunological properties of arabinogalactan polysaccharides from pollen of timothy grass (Phleum pratense L.). Carbohydr Res 340:657–663

    Article  CAS  PubMed  Google Scholar 

  • Brillouet J-M, Williams P, Will F, Müller G, Pellerina P (1996) Structural characterization of an apple juice arabinogalactan-protein which aggregates following enzymic dearabinosylation. Carbohydr Polym 29:271–275

    Article  CAS  Google Scholar 

  • Calame W, Weseler AR, Viebke C, Flynn C, Siemensma AD (2008) Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br J Nutr 100:1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Capek P, Matulová M, Navarini L, Suggi-Liverani F (2010) Structural features of an arabinogalactan-protein isolated from instant coffee powder of Coffea arabica beans. Carbohydr Polym 80:180–185

    Article  CAS  Google Scholar 

  • Cartmell A, Muñoz-Muñoz J, Briggs JA, Ndeh DA, Lowe EC, Baslé A, Terrapon N, Stott K, Heunis T, Gray J, Yu L, Dupree P, Fernandes PZ, Shah S, Williams SJ, Labourel A, Trost M, Henrissat B, Gilbert HJ (2018) A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nat Microbiol 3:1314–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crociani F, Alessandrini A, Mucci MM, Biavati B (1994) Degradation of complex carbohydrates by Bifidobacterium spp. Int J Food Microbiol 24:199–210

    Article  CAS  PubMed  Google Scholar 

  • Daguet D, Pinheiro I, Verhelst A, Possemiers S, Marzorati M (2016) Arabinogalactan and fructooligosaccharides improve the gut barrier function in distinct areas of the colon in the simulator of the human intestinal microbial ecosystem. J Funct Foods 20:369–379

    Article  CAS  Google Scholar 

  • Degnan BA, Macfarlane GT (1995) Arabinogalactan utilization in continuous cultures of Bifidobacterium longum: effect of co-culture with Bacteroides thetaiotaomicron. Anaerobe 1:103–112

    Article  CAS  PubMed  Google Scholar 

  • Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A, Young VB, Henrissat B, Wilmes P, Stappenbeck TS, Nunez G, Martens EC (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:1339–1353 e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis M, Egelund J, Schultz CJ, Bacic A (2010) Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol 153:403–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita K, Sakamoto S, Ono Y, Wakao M, Suda Y, Kitahara K, Suganuma T (2011) Molecular cloning and characterization of a β-l-arabinobiosidase in Bifidobacterium longum that belongs to a novel glycoside hydrolase family. J Biol Chem 286:5143–5150

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Kitahara K, Suganuma T (2012) Functional analysis of degradative enzymes for hydroxyproline-linked β-l-arabinofuranosides in Bifidobacterium longum. Trends Glycosci Glycotechnol 24:215–224

    Article  CAS  Google Scholar 

  • Fujita K, Sakaguchi T, Sakamoto A, Shimokawa M, Kitahara K (2014a) Bifidobacterium longum subsp. longum exo-β-1,3-galactanase, an enzyme for the degradation of type II arabinogalactan. Appl Environ Microbiol 80:4577–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita K, Takashi Y, Obuchi E, Kitahara K, Suganuma T (2014b) Characterization of a novel β-l-arabinofuranosidase in Bifidobacterium longum: functional elucidation of a DUF1680 protein family member. J Biol Chem 289:5240–5249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita K, Sakamoto A, Kaneko S, Kotake T, Tsumuraya Y, Kitahara K (2019) Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum. Appl Microbiol Biotechnol 103:1299–1310

    Article  CAS  Google Scholar 

  • Goodrum LJ, Patel A, Leykam JF, Kieliszewski MJ (2000) Gum arabic glycoprotein contains glycomodules of both extensin and arabinogalactan-glycoproteins. Phytochemistry 54:99–106

    Article  CAS  PubMed  Google Scholar 

  • Harris S, Powers S, Monteagudo-Mera A, Kosik O, Lovegrove A, Shewry P, Charalampopoulos D (2019) Determination of the prebiotic activity of wheat arabinogalactan peptide (AGP) using batch culture fermentation. Eur J Nutr:1-11

  • Ichinose H, Yoshida M, Kotake T, Kuno A, Igarashi K, Tsumuraya Y, Samejima M, Hirabayashi J, Kobayashi H, Kaneko S (2005) An exo-β-1,3-galactanase having a novel β-1,3-galactan-binding module from Phanerochaete chrysosporium. J Biol Chem 280:25820–25829

    Article  CAS  PubMed  Google Scholar 

  • Ichinose H, Kuno A, Kotake T, Yoshida M, Sakka K, Hirabayashi J, Tsumuraya Y, Kaneko S (2006) Characterization of an exo-β-1,3-galactanase from Clostridium thermocellum. Appl Environ Microbiol 72:3515–3523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichinose H, Kotake T, Tsumuraya Y, Kaneko S (2008) Characterization of an endo-β-1,6-galactanase from Streptomyces avermitilis NBRC14893. Appl Environ Microbiol 74:2379–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inaba M, Maruyama T, Yoshimi Y, Kotake T, Matsuoka K, Koyama T, Tryfona T, Dupree P, Tsumuraya Y (2015) l-Fucose-containing arabinogalactan-protein in radish leaves. Carbohydr Res 415:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi K, Shibuya N, Ishii T (1996) A novel tetrasaccharide, with a structure similar to the terminal sequence of an arabinogalactan-protein, accumulates in rice anthers in a stage-specific manner. Plant J 9:777–785

    Article  CAS  PubMed  Google Scholar 

  • Kelly GS (1999) Larch arabinogalactan: clinical relevance of a novel immune-enhancing polysaccharide. Altern Med Rev 4:96–103

    CAS  PubMed  Google Scholar 

  • Kikuchi A, Okuyama M, Kato K, Osaki S, Ma M, Kumagai Y, Matsunaga K, Klahan P, Tagami T, Yao M, Kimura A (2017) A novel glycoside hydrolase family 97 enzyme: bifunctional β-l-arabinopyranosidase/α-galactosidase from Bacteroides thetaiotaomicron. Biochimie 142:41–50

    Article  CAS  PubMed  Google Scholar 

  • Knoch E, Dilokpimol A, Geshi N (2014) Arabinogalactan proteins: focus on carbohydrate active enzymes. Front Plant Sci 5:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotake T, Kaneko S, Kubomoto A, Haque MA, Kobayashi H, Tsumuraya Y (2004) Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-β-(1→6)-galactanase gene. Biochem J 377:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotake T, Hirata N, Degi Y, Ishiguro M, Kitazawa K, Takata R, Ichinose H, Kaneko S, Igarashi K, Samejima M, Tsumuraya Y (2011) Endo-β-1,3-galactanase from winter mushroom Flammulina velutipes. J Biol Chem 286:27848–27854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loosveld A-MA, Grobet PJ, Delcour JA (1997) Contents and structural features of water-extractable arabinogalactan in wheat flour fractions. J Agric Food Chem 45:1998–2002

    Article  CAS  Google Scholar 

  • Margolles A, de los Reyes-Gavilan CG (2003) Purification and functional characterization of a novel α-l-arabinofuranosidase from Bifidobacterium longum B667. Appl Environ Microbiol 69:5096–5103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matulova M, Capek P, Kaneko S, Navarini L, Liverani FS (2011) Structure of arabinogalactan oligosaccharides derived from arabinogalactan-protein of Coffea arabica instant coffee powder. Carbohydr Res 346:1029–1036

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Munoz J, Cartmell A, Terrapon N, Basle A, Henrissat B, Gilbert HJ (2017a) An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins. J Biol Chem 292:13271–13283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Munoz J, Cartmell A, Terrapon N, Henrissat B, Gilbert HJ (2017b) Unusual active site location and catalytic apparatus in a glycoside hydrolase family. Proc Natl Acad Sci U S A 114:4936–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ndeh D, Gilbert HJ (2018) Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev 42:146–164

    Article  CAS  Google Scholar 

  • Nguema-Ona E, Vicré-Gibouin M, Cannesan M-A, Driouich A (2013) Arabinogalactan proteins in root–microbe interactions. Trends Plant Sci 18:440–449

    Article  CAS  PubMed  Google Scholar 

  • Okawa M, Fukamachi K, Tanaka H, Sakamoto T (2013) Identification of an exo-β-1,3-d-galactanase from Fusarium oxysporum and the synergistic effect with related enzymes on degradation of type II arabinogalactan. Appl Microbiol Biotechnol 97:9685–9694

    Article  CAS  PubMed  Google Scholar 

  • Ozaki S, Oki N, Suzuki S, Kitamura S (2010) Structural characterization and hypoglycemic effects of arabinogalactan-protein from the tuberous cortex of the white-skinned sweet potato (Ipomoea batatas L.). J Agric Food Chem 58:11593–11599

    Article  CAS  PubMed  Google Scholar 

  • Ponder GR, Richards GN (1997) Arabinogalactan from Western larch, part III: alkaline degradation revisited, with novel conclusions on molecular structure. Carbohydr Polym 34:251–261

    Article  CAS  Google Scholar 

  • Qi W, Fong C, Lamport DT (1991) Gum arabic glycoprotein is a twisted hairy rope: a new model based on O-galactosylhydroxyproline as the polysaccharide attachment site. Plant Physiol 96:848–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saishin N, Yamamoto I (2009) α-Galactosidase purified from Bifidobacterium longum JCM 7052 grown on gum arabic. J Biol Macromol 9:71–80

    Article  CAS  Google Scholar 

  • Saishin N, Ueta M, Wada A, Yamamoto I (2010) Properties of β-galactosidase purified from Bifidobacterium longum subsp. longum JCM 7052 grown on gum arabic. J Biol Macromol 10:23–31

    CAS  Google Scholar 

  • Sakamoto T, Ishimaru M (2013) Peculiarities and applications of galactanolytic enzymes that act on type I and II arabinogalactans. Appl Microbiol Biotechnol 97:5201–5213

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Taniguchi Y, Suzuki S, Ihara H, Kawasaki H (2007) Characterization of Fusarium oxysporum β-1,6-galactanase, an enzyme that hydrolyzes larch wood arabinogalactan. Appl Environ Microbiol 73:3109–3112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Tanaka H, Nishimura Y, Ishimaru M, Kasai N (2011) Characterization of an exo-β-1,3-d-galactanase from Sphingomonas sp. 24T and its application to structural analysis of larch wood arabinogalactan. Appl Microbiol Biotechnol 90:1701–1710

    Article  CAS  PubMed  Google Scholar 

  • Salyers AA, Vercellotti JR, West SE, Wilkins TD (1977a) Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol 33:319–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salyers AA, West SE, Vercellotti JR, Wilkins TD (1977b) Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol 34:529–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki Y, Togo N, Kitahara K, Fujita K (2018) Characterization of a GH36 β-l-arabinopyranosidase in Bifidobacterium adolescentis. J Appl Glycosci 65:23–30

    Article  CAS  Google Scholar 

  • Saulnier L, Brillouet J-M, Moutounet M, du Penhoat CH, Michon V (1992) New investigations of the structure of grape arabinogalactan-protein. Carbohydr Res 224:219–235

    Article  CAS  PubMed  Google Scholar 

  • Shimoda R, Okabe K, Kotake T, Matsuoka K, Koyama T, Tryfona T, Liang HC, Dupree P, Tsumuraya Y (2014) Enzymatic fragmentation of carbohydrate moieties of radish arabinogalactan-protein and elucidation of the structures. Biosci Biotechnol Biochem 78:818–831

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa M, Kitahara K, Fujita K (2015) Characterization of a β-l-arabinopyranosidase from Bifidobacterium longum subsp. longum. J Appl Glycosci 62:1–6

    Article  CAS  Google Scholar 

  • Terpend K, Possemiers S, Daguet D, Marzorati M (2013) Arabinogalactan and fructo-oligosaccharides have a different fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME ®). Environ Microbiol Rep 5:595–603

    Article  CAS  PubMed  Google Scholar 

  • Tischer CA, Gorin PAJ, Iacomini M (2002) The free reducing oligosaccharides of gum arabic: aids for structural assignments in the polysaccharide. Carbohydr Polym 47:151–158

    Article  CAS  Google Scholar 

  • Tryfona T, Liang H-C, Kotake T, Kaneko S, Marsh J, Ichinose H, Lovegrove A, Tsumuraya Y, Shewry PR, Stephens E, Dupree P (2010) Carbohydrate structural analysis of wheat flour arabinogalactan protein. Carbohydr Res 345:2648–2656

    Article  CAS  PubMed  Google Scholar 

  • Tryfona T, Liang HC, Kotake T, Tsumuraya Y, Stephens E, Dupree P (2012) Structural characterization of Arabidopsis leaf arabinogalactan polysaccharides. Plant Physiol 160:653–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsumuraya Y, Ogura K, Hashimoto Y, Mukoyama H, Yamamoto S (1988) Arabinogalactan-proteins from primary and mature roots of radish (Raphanus sativus L.). Plant Physiol 86:155–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsumuraya Y, Mochizuki N, Hashimoto Y, Kovac P (1990) Purification of an exo-β-(1→3)-d-galactanase of Irpex lacteus (Polyporus tulipiferae) and its action on arabinogalactan-proteins. J Biol Chem 265:7207–7215

    CAS  PubMed  Google Scholar 

  • Viborg AH, Katayama T, Hachem MA, Andersen MC, Nishimoto M, Clausen MH, Urashima T, Svensson B, Kitaoka M (2014) Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697. Glycobiology 24:208–216

    Article  CAS  PubMed  Google Scholar 

  • Vidal S, Williams P, Doco T, Moutounet M, Pellerin P (2003) The polysaccharides of red wine: total fractionation and characterization. Carbohydr Polym 54:439–447

    Article  CAS  Google Scholar 

  • Wyatt GM, Bayliss CE, Holcroft JD (1986) A change in human faecal flora in response to inclusion of gum arabic in the diet. Br J Nutr 55:261–266

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Fujita.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, K., Sasaki, Y. & Kitahara, K. Degradation of plant arabinogalactan proteins by intestinal bacteria: characteristics and functions of the enzymes involved. Appl Microbiol Biotechnol 103, 7451–7457 (2019). https://doi.org/10.1007/s00253-019-10049-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10049-0

Keywords

Navigation