Skip to main content

Advertisement

Log in

Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Being the most abundant renewable organic substance on Earth, lignocellulosic biomass has acted as an attractive and cost-effective feedstock for biobased production of value-added products. However, lignocellulosic biomass should be properly treated for its effective utilization during biotransformation. The current work aimed to demonstrate biobased production of butyrate and 3-hydroxybutyrate (3-HB) in engineered Escherichia coli using pretreated and detoxified aspen tree (Populus tremuloides) wood chips as the feedstock. Various bioprocessing and genetic/metabolic factors limiting the production of cellulosic butyrate and 3-HB were identified. With these developed bioprocessing strategies and strain engineering approaches, major carbons in the hydrolysate, including glucose, xylose, and even acetate, could be completely dissimilated during shake-flask cultivation with up to 1.68 g L−1 butyrate, 8.95 g L−1 3-HB, and minimal side metabolites (i.e., acetate and ethanol) being obtained. Our results highlight the importance of consolidating bioprocess and genetic engineering strategies for effective biobased production from lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achinas S, Euverink GJW. (2016). Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. EJB 23(Supplement C):44–53

  • Akawi L, Srirangan K, Liu X, Moo-Young M, Perry CC (2015) Engineering Escherichia coli for high-level production of propionate. J Ind Microbiol Biotechnol 42(7):1057–1072

    Article  CAS  PubMed  Google Scholar 

  • Alexeeva S, Hellingwerf KJ, Teixeira de Mattos MJ (2002) Quantitative assessment of oxygen availability: perceived aerobiosis and its effect on flux distribution in the respiratory chain of Escherichia coli. J Bacteriol 184(5):1402–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alriksson B, Horvath IS, Sjöde A, Nilvebrant N-O, Jönsson LJ (2005a) Ammonium hydroxide detoxification of spruce acid hydrolysates. In: Davison BH, Evans BR, Finkelstein M, McMillan JD (eds) Twenty-sixth symposium on biotechnology for fuels and chemicals. Humana Press, Totowa, pp 911–922

    Chapter  Google Scholar 

  • Alriksson B, Horváth IS, Sjöde A, Nilvebrant N-O, Jönsson LJ (2005b) Ammonium hydroxide detoxification of spruce acid hydrolysates. Appl Biochem Biotechnol 124(1):911–922

    Article  Google Scholar 

  • Alriksson B, Sjöde A, Nilvebrant N-O, Jönsson LJ (2006) Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 130(1):599–611

    Article  Google Scholar 

  • Alriksson B, Cavka A, Jönsson LJ (2011) Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresour Technol 102(2):1254–1263

    Article  CAS  PubMed  Google Scholar 

  • Amann E, Ochs B, Abel K-J (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69(2):301–315

    Article  CAS  PubMed  Google Scholar 

  • Amartey S, Jeffries T (1996) An improvement in Pichia stipitis fermentation of acid-hydrolysed hemicellulose achieved by overliming (calcium hydroxide treatment) and strain adaptation. World J Microbiol Biotechnol 12(3):281–283

    Article  CAS  PubMed  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2

  • Baek J-M, Mazumdar S, Lee S-W, Jung M-Y, Lim J-H, Seo S-W, Jung G-Y, Oh M-K (2013) Butyrate production in engineered Escherichia coli with synthetic scaffolds. Biotechnol Bioeng 110(10):2790–2794

    Article  CAS  PubMed  Google Scholar 

  • Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnology 2014:31

    Article  CAS  Google Scholar 

  • Banerjee N, Bhatnagar R, Viswanathan L (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Euro J Appl Microbiol Biotechnol 11(4):226–228

    Article  CAS  Google Scholar 

  • Bond-Watts BB, Bellerose RJ, Chang MCY (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7:222–227

    Article  CAS  PubMed  Google Scholar 

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. J Enzym Res 2011:17

    Google Scholar 

  • Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39(7):4222–4234

    Article  Google Scholar 

  • Cavka A, Jönsson LJ. 2013. Detoxification of lignocellulosic hydrolysates using sodium borohydride. Bioresour Technol 136 (Supplement C):368–376

  • Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Lee J, Jang Y-S, Lee SY (2014) Metabolic engineering of microorganisms for the production of higher alcohols. mBio 5(5):e01524-14

  • Coz A, Llano T, Cifrián E, Viguri J, Maican E, Sixta H (2016) Physico-chemical alternatives in lignocellulosic materials in relation to the kind of component for fermenting purposes. Materials 9(7):574

    Article  PubMed Central  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97(12):6640–6645

    Article  CAS  PubMed  Google Scholar 

  • Delidovich I, Hausoul PJC, Deng L, Pfützenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116(3):1540–1599

    Article  CAS  PubMed  Google Scholar 

  • Dionisi D, Anderson JA, Aulenta F, McCue A, Paton G (2015) The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. J Chem Technol Biotechnol 90(3):366–383

    Article  CAS  Google Scholar 

  • Dwidar M, Park J-Y, Mitchell RJ, Sang B-I (2012) The future of butyric acid in industry. Sci World J 2012:471417

    Article  CAS  Google Scholar 

  • Egoburo DE, Diaz Peña R, Alvarez DS, Godoy MS, Mezzina MP, Pettinari MJ (2018) Microbial cell factories à la carte: elimination of global regulators Cra and ArcA generates metabolic backgrounds suitable for the synthesis of bioproducts in Escherichia coli. Appl Environ Microbiol 84

  • El-Shahawy Tarek Abd E-G. (2015) Chemicals with a natural reference for controlling water hyacinth, Eichhornia crassipes (Mart.) Solms. J Plant Protect Res. p 294

  • Entin-Meer M, Rephaeli A, Yang X, Nudelman A, VandenBerg SR, Haas-Kogan DA (2005) Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomas. Mol Cancer Ther 4(12):1952–1961

    Article  CAS  PubMed  Google Scholar 

  • Fakhrudin J, Setyaningsih D, Rahayuningsih M (2014) Bioethanol production from seaweed Eucheuma cottonii by neutralization and detoxification of acidic catalyzed hydrolysate. 455–458 p.

  • Fenske JJ, Griffin DA, Penner MH (1998) Comparison of aromatic monomers in lignocellulosic biomass prehydrolysates. J Ind Microbiol Biotechnol 20(6):364–368

    Article  CAS  Google Scholar 

  • Förster AH, Gescher J (2014) Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products. Front Bioeng Biotechnol 2(16)

  • Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Meth 6(5):343–345

    Article  CAS  Google Scholar 

  • Guevara-Martínez M, Gällnö KS, Sjöberg G, Jarmander J, Perez-Zabaleta M, Quillaguamán J, Larsson G (2015) Regulating the production of (R)-3-hydroxybutyrate in Escherichia coli by N or P limitation. Front Microbiol 6(AUG):844

    PubMed  PubMed Central  Google Scholar 

  • Gulevich AY, Skorokhodova AY, Sukhozhenko AV, Debabov VG (2017) Biosynthesis of enantiopure (S)-3-hydroxybutyrate from glucose through the inverted fatty acid β-oxidation pathway by metabolically engineered Escherichia coli. J Biotechnol 244(Supplement C):16–24

    Article  CAS  PubMed  Google Scholar 

  • Gunsalus RP (1992) Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes. J Bacteriol 174(22):7069–7074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microbial Biotechnol 1(6):497–506

    Article  CAS  Google Scholar 

  • Holt RA, Stephens GM, Morris JG (1984) Production of solvents by Clostridium acetobutylicum cultures maintained at neutral pH. Appl Environ Microbiol 48(6):1166–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang Y-S, Woo HM, Im JA, Kim IH, Lee SY (2013) Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. Appl Microbiol Biotechnol 97(21):9355–9363

    Article  CAS  PubMed  Google Scholar 

  • Jarmander J, Belotserkovsky J, Sjöberg G, Guevara-Martínez M, Pérez-Zabaleta M, Quillaguamán J, Larsson G (2015) Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli. Microb Cell Factories 14(1):51

    Article  CAS  Google Scholar 

  • Jawed K, Mattam AJ, Fatma Z, Wajid S, Abdin MZ, Yazdani SS (2016) Engineered production of short chain fatty acid in Escherichia coli using fatty acid synthesis pathway. PLoS One 11(7):e0160035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jha AK, Li J, Yuan Y, Baral N, Ai B (2014) A review on bio-butyric acid production and its optimization. 1019–1024 p.

  • Jiang Y, Zeng X, Luque R, Tang X, Sun Y, Lei T, Liu S, Lin L (2017) Cooking with active oxygen and solid alkali: a promising alternative approach for lignocellulosic biorefineries. ChemSusChem 10(20):3982–3993

    Article  CAS  PubMed  Google Scholar 

  • Jobling MG, Holmes RK (1990) Construction of vectors with the p15a replicon, kanamycin resistance, inducible lacZ alpha and pUC18 or pUC19 multiple cloning sites. Nucleic Acids Res 18(17):5315–5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jönsson LJ, Palmqvist E, Nilvebrant N-O, Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49(6):691–697

    Article  Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels 6:6–16

    Article  CAS  Google Scholar 

  • Kang Y, Weber KD, Qiu Y, Kiley PJ, Blattner FR (2005) Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol 187(3):1135–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SB, Lee JH, Yang X, Lee J, Kim SW (2015) Furfural production from hydrolysate of barley straw after dilute sulfuric acid pretreatment. Korean J Chem Eng 32(11):2280–2284

    Article  CAS  Google Scholar 

  • Kumar R, Shimizu K (2011) Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures. Microb Cell Factories 10:3–3

    Article  CAS  Google Scholar 

  • Lamsen EN, Atsumi S (2012) Recent progress in synthetic biology for microbial production of C3–C10 alcohols. Front Microbiol 3:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci 109(16):6018–6023

    Article  CAS  PubMed  Google Scholar 

  • Larsson S, Reimann A, Nilvebrant N-O, Jönsson LJ (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77(1):91–103

    Article  Google Scholar 

  • Lee IY, Kim MK, Park YH, Lee SY (1996) Regulatory effects of cellular nicotinamide nucleotides and enzyme activities on poly (3-hydroxybutyrate) synthesis in recombinant Escherichia coli. Biotechnol Bioeng 52(6):707–712

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen X, Ren J, Deng H, Peng F, Sun R (2015) Functional relationship of furfural yields and the hemicellulose-derived sugars in the hydrolysates from corncob by microwave-assisted hydrothermal pretreatment. Biotechnol Biofuels 8:127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López MJ, Nichols NN, Dien BS, Moreno J, Bothast RJ (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biotechnol 64(1):125–131

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, Rodriguez M, York S, Preston J, Ingram L (2000) Effect of Ca(OH)2 treatments on the composition and toxicity of bagasse hemicellulose hydrolysates. 526–536 p.

  • Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Marzan LW, Siddiquee KAZ, Shimizu K (2011) Metabolic regulation of an fnr gene knockout Escherichia coli under oxygen limitation. Bioeng Bugs 2(6):331–337

    Article  PubMed  Google Scholar 

  • Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Mohr A, Raman S (2013) Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63(Supplement C):114–122.

  • Nikel PI, Pettinari MJ, Galvagno MA, Méndez BS (2006) Poly(3-hydroxybutyrate) synthesis by recombinant Escherichia coli arcA mutants in microaerobiosis. Appl Microbiol Biotechnol 72(4):2614–2620

    CAS  Google Scholar 

  • Nikel PI, Pettinari MJ, Galvagno MA, Méndez BS (2008a) Poly(3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures. Appl Microbiol Biotechnol 77(6):1337–1343

    Article  PubMed  Google Scholar 

  • Nikel PI, Pettinari MJ, Ramírez MC, Galvagno MA, Méndez BS (2008b) Escherichia coli arcA mutants: metabolic profile characterization of microaerobic cultures using glycerol as a carbon source. J Mol Microbiol Biotechnol 15(1):48–54

    Article  CAS  PubMed  Google Scholar 

  • Nikel PI, de Almeida A, Giordano AM, Pettinari MJ (2010) Redox driven metabolic tuning. Bioeng Bugs 1(4):293–297

    Article  Google Scholar 

  • Okuda N, Soneura M, Ninomiya K, Katakura Y, Shioya S (2008) Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J Biosci Bioeng 106(2):128–133

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B, Galbe M, Zacchi G (1996) The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzym Microb Technol 19(6):470–476

    Article  CAS  Google Scholar 

  • Panagiotopoulos IA, Chandra RP, Saddler JN (2013) A two-stage pretreatment approach to maximise sugar yield and enhance reactive lignin recovery from poplar wood chips. Bioresour Technol 130:570–577

    Article  CAS  PubMed  Google Scholar 

  • Park DM, Akhtar MS, Ansari AZ, Landick R, Kiley PJ (2013) The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet 9(10):e1003839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez-Zabaleta M, Sjöberg G, Guevara-Martínez M, Jarmander J, Gustavsson M, Quillaguamán J, Larsson G (2016) Increasing the production of (R)-3-hydroxybutyrate in recombinant Escherichia coli by improved cofactor supply. Microb Cell Factories 15:91

    Article  CAS  Google Scholar 

  • Perrenoud A, Sauer U (2005) Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol 187(9):3171–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson P, Andersson J, Gorton L, Larsson S, Nilvebrant N-O, Jönsson LJ (2002a) Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. J Agric Food Chem 50(19):5318–5325

    Article  CAS  PubMed  Google Scholar 

  • Persson P, Larsson S, Jönsson LJ, Nilvebrant N-O, Sivik B, Munteanu F, Thörneby L, Gorton L (2002b) Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol Bioeng 79(6):694–700

    Article  CAS  PubMed  Google Scholar 

  • Ranatunga TD, Jervis J, Helm RF, McMillan JD, Wooley RJ (2000) The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics, uronic acids and ether-soluble organics. Enzym Microb Technol 27(3):240–247

    Article  CAS  Google Scholar 

  • Ren Q, Ruth K, Thöny-Meyer L, Zinn M (2010) Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives. Appl Microbiol Biotechnol 87(1):41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3. Biotech 5(4):337–353

    Google Scholar 

  • Sárvári Horváth I, Franzén CJ, Taherzadeh MJ, Niklasson C, Lidén G (2003) Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl Environ Microbiol 69(7):4076–4086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sateesh LR, Adivikatla V, Naseeruddin S, Yadav DS, Panda SH, Yenumula GP, Linga V (2011) Studies on different detoxification methods for the acid hydrolysate of lignocellulosic substrate Saccharum spontaneum. 53–57 p.

  • Sawers G, Suppmann B (1992) Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the ArcA and FNR proteins. J Bacteriol 174(11):3474–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalel Levanon S, San K-Y, Bennett GN (2005) Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses. Biotechnol Bioeng 89(5):556–564

    Article  CAS  Google Scholar 

  • Shalel-Levanon S, San K-Y, Bennett GN (2005) Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions. Biotechnol Bioeng 92(2):147–159

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Chandra RP, Lee J-S, Lu C, Saddler JN (2017) A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnol Biofuels 10(1):157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tokiwa Y, Ugwu CU (2007) Biotechnological production of (R)-3-hydroxybutyric acid monomer. J Biotechnol 132(3):264–272

    Article  CAS  PubMed  Google Scholar 

  • Tseng H-C, Martin CH, Nielsen DR, Prather KLJ (2009) Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate. Appl Environ Microbiol 75(10):3137–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulbricht RJ, Northup SJ, Thomas JA (1984) A review of 5-hydroxymethylfurfural (HMF) in parenteral solutions. Fundam Appl Toxicol 4(5):843–53

  • Valdivia M, Galan JL, Laffarga J, Ramos J-L (2016) Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol 9(5):585–594

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentine J, Clifton-Brown J, Hastings A, Robson P, Allison G, Smith P (2012) Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy 4(1):1–19

    Article  Google Scholar 

  • Van Zyl C, Prior BA, Du Preez JC (1988) Production of ethanol from sugar cane bagasse hemicellulose hydrolyzate by Pichia stipitis. Appl Biochem Biotechnol 17(1):357–369

    Google Scholar 

  • Volker AR, Gogerty DS, Bartholomay C, Hennen-Bierwagen T, Zhu H, Bobik TA (2014) Fermentative production of short-chain fatty acids in Escherichia coli. Microbiology 160(Pt_7):1513–1522

  • Welton T (2015) Solvents and sustainable chemistry. Proc Math Phys Eng Sci 471(2183):20150502

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood BJB (1998) Microbiology of fermented foods. Springer, New York

    Google Scholar 

  • Xiros C, Olsson L (2014) Comparison of strategies to overcome the inhibitory effects in high-gravity fermentation of lignocellulosic hydrolysates. Biomass Bioenergy 65 (Supplement C):79–90

  • Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R and others. 2011. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445, 452

  • Yu RJ, Van Scott EJ (2004) Alpha-hydroxyacids and carboxylic acids. J Cosmet Dermatol 3(2):76–87

    Article  PubMed  Google Scholar 

  • Zaldivar J, Martinez A, Ingram L (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. 24–33 p.

  • Zheng Z, Gong Q, Liu T, Deng Y, Chen J-C, Chen G-Q (2004) Thioesterase II of Escherichia coli plays an important role in 3-hydroxydecanoic acid production. Appl Environ Microbiol 70(7):3807–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors’ research is supported by Natural Sciences and Engineering Research Council (NSERC) and Networks of Centres of Excellence of Canada (BioFuelNet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Perry Chou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miscevic, D., Srirangan, K., Kefale, T. et al. Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli. Appl Microbiol Biotechnol 103, 5215–5230 (2019). https://doi.org/10.1007/s00253-019-09815-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09815-x

Keywords

Navigation