Skip to main content
Log in

Advancing biomarkers for anaerobic o-xylene biodegradation via metagenomic analysis of a methanogenic consortium

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Quantifying functional biomarker genes and their transcripts provides critical lines of evidence for contaminant biodegradation; however, accurate quantification depends on qPCR primers that contain no, or minimal, mismatches with the target gene. Developing accurate assays has been particularly challenging for genes encoding fumarate-adding enzymes (FAE) due to the high level of genetic diversity in this gene family. In this study, metagenomics applied to a field-derived, o-xylene-degrading methanogenic consortium revealed genes encoding FAE that would not be accurately quantifiable by any previously available PCR assays. Sequencing indicated that a gene similar to the napthylmethylsuccinate synthase gene (nmsA) was most abundant, although benzylsuccinate synthase genes (bssA) also were present along with genes encoding alkylsuccinate synthase (assA). Upregulation of the nmsA-like gene was observed during o-xylene degradation. Protein homology modeling indicated that mutations in the active site, relative to a BssA that acts on toluene, increase binding site volume and accessibility, potentially to accommodate the relatively larger o-xylene. The new nmsA-like gene was also detected at substantial concentrations at field sites with a history of xylene contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

Thanks to Elizabeth Edwards and Fei Luo for supplying the enrichment culture and for assistance with culturing. Thanks to Jan Leach for the use of her qPCR machine while ours was repaired, and to Jillian Lang for assistance with their machine. Thanks to Diana Marcela Nuñez Hernandez for conducting some gas chromatography measurements. Thanks to Jennifer Steyaert for conducting preliminary protein structural modeling.

Funding

This project was funded by NSF CBET 1438660.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan K. De Long.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossmassler, K., Snow, C.D., Taggart, D. et al. Advancing biomarkers for anaerobic o-xylene biodegradation via metagenomic analysis of a methanogenic consortium. Appl Microbiol Biotechnol 103, 4177–4192 (2019). https://doi.org/10.1007/s00253-019-09762-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09762-7

Keywords

Navigation