Skip to main content
Log in

Characterization of 17β-hydroxysteroid dehydrogenase and regulators involved in estrogen degradation in Pseudomonas putida SJTE-1

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In bacteria, the enzyme catalyzing the transformation of 17β-estradiol is considered the key enzyme for its metabolism, whose enzymatic activity and regulatory network influence the biodegradation efficiency of this typical estrogen. In this work, a novel 17β-hydroxysteroid dehydrogenase (17β-HSD) was characterized from the estrogen-degrading strain Pseudomonas putida SJTE-1, and two regulators were identified. This 17β-HSD, a member of the short-chain dehydrogenase/reductase (SDR) superfamily, could be induced by 17β-estradiol and catalyzed the oxidization reaction at the C17 site of 17β-estradiol efficiently. Its Km value was 0.068 mM, and its Vmax value was 56.26 μmol/min/mg; over 98% of 17β-estradiol was oxidized into estrone in 5 min, indicating higher efficiency than other reported bacterial 17β-HSDs. Furthermore, two genes (crgA and oxyR) adjacent to 17β-hsd were studied which encoded the potential CrgA and OxyR regulators. Overexpression of crgA could enhance the transcription of 17β-hsd, while that of oxyR resulted in the opposite effect. They could bind to the specific and different sites in the promoter region of 17β-hsd gene directly, and binding of OxyR could be released by 17β-estradiol. OxyR repressed the expression of 17β-hsd by its specific binding to the conserved motif of GATA-N9-TATC, while CrgA activated the expression of this gene through its binding to the motif of T-N11-A. Therefore, this 17β-HSD transformed 17β-estradiol efficiently and the two regulators regulated its expression directly. This work could promote the study of the enzymatic mechanism and regulatory network of the estrogen biodegradation pathway in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beck KR, Kaserer T, Schuster D, Odermatt A (2017) Virtual screening applications in short-chain dehydrogenase/reductase research. J Steroid Biochem Mol Biol 171:157–177

    Article  CAS  PubMed  Google Scholar 

  • Chang YH, Wang YL, Lin JY, Chuang LY, Hwang CC (2010) Expression, purification, and characterization of a human recombinant 17beta-hydroxysteroid dehydrogenase type 1 in Escherichia coli. Mol Biotechnol 4:4133

    Google Scholar 

  • Combalbert S, Hernandez-Raquet G (2010) Occurrence, fate, and biodegradation of estrogens in sewage and manure. Appl Microbiol Biotechnol 86:1671–1692

    Article  CAS  PubMed  Google Scholar 

  • Deghmane AE, Petit S, Topilko A, Pereira Y, Giorgini D, Larribe M, Taha MK (2000) Intimate adhesion of Neisseria meningitidis to human epithelial cells is under the control of the crgA gene, a novel LysR-type transcriptional regulator. EMBO J 19(5):1068–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futoshi K, Maki O, Satoshi S, Yamazoe A, Yagi O (2010) Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp. and Sphingomonas sp. J Biosci Bioeng 109:576–582

    Article  CAS  Google Scholar 

  • Gong W, Xiong G, Maser E (2012a) Identification and characterization of the LysR-type transcriptional regulator HsdR for steroid-inducible expression of the 3α-hydroxysteroid dehydrogenase/carbonyl reductase gene in Comamonas testosteroni. Appl Environ Microbiol 78(4):941–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong W, Xiong G, Maser E (2012b) Oligomerization and negative autoregulation of the LysR-type transcriptional regulator HsdR from Comamonas testosteroni. J Steroid Biochem Mol Biol 132(3–5):203–211

    Article  CAS  PubMed  Google Scholar 

  • Haiyan R, Shulan J, ud din Ahmad N, Dao W, Chengwu C (2007) Degradation characteristics and metabolic pathway of 17-alpha-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere 66:340–346

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Haughn GW, Calvo JM, Wallace JC (1988) A large family of bacterial activator proteins. Proc Natl Acad Sci U S A 85(18):6602–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hom-Diaz A, Llorca M, Rodríguez-Mozaz S, Vicent T (2015) Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. J Environ Manag 155:106–113

    Article  CAS  Google Scholar 

  • Hwang CC, Chang YH, Hsu CN, Hsu HH, Li CW, Pon HI (2005) Mechanistic roles of Ser-114, Tyr-155, and Lys-159 in 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. J Biol Chem 280(5):3522–3528

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Pan T, Zhang Y, Xiong G, Yu Y (2017) Functional analysis of a novel repressor LuxR in Comamonas testosteroni. Chem Biol Interact 276:113–120

    Article  CAS  PubMed  Google Scholar 

  • Jianghong S, Satoshi N, Masaaki H (2004) Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Res 38:2323–2330

    Article  CAS  Google Scholar 

  • Kallberg Y, Oppermann U, Persson B (2010) Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models. FEBS J 277(10):2375–2386

    Article  CAS  PubMed  Google Scholar 

  • Katori Y, Ksu Y, Utsumi H (2002) Estrogen-like effect and cytotoxicity of chemical compounds. Water Sci Technol 46:363–366

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh KL, Jörnvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65(24):3895–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanal SK, Xie B, Thompson ML, Sung S, Ong SK, Van Leeuwent J (2006) Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environ Sci Technol 40:6537–6546

    Article  CAS  PubMed  Google Scholar 

  • Li M, Xiong G, Maser E (2013) A novel transcriptional repressor PhaR for the steroid-inducible expression of the 3,17β-hydroxysteroid dehydrogenase gene in Comamonas testosteroni ATCC11996. Chem Biol Interact 202(1–3):116–125

    Article  CAS  PubMed  Google Scholar 

  • Liang R, Liu H, Liu J (2012) Genome sequence of Pseudomonas putida strain SJTE-1, a bacterium capable of degrading estrogens and persistent organic pollutants. J Bacteriol 194:4781–4782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

  • Lu Z, Liang R, Liu X, Hou J, Liu J (2012) RNase HIII from Chlamydophila pneumoniae can efficiently cleave double-stranded DNA carrying a chimeric ribonucleotide in the presence of manganese. Mol Microbiol 83(5):1080–1093

    Article  CAS  PubMed  Google Scholar 

  • Luine VN (2014) Estradiol and cognitive function: past, present and future. Horm Behav 66(4):66602–66,618

    Article  CAS  Google Scholar 

  • Maser E, Xiong G, Grimm C, Ficner R, Reuter K (2001) 3α-Hydroxysteroid dehydrogenase/ carbonyl reductase from Comamonas testosteroni: biological significance, three-dimensional structure and gene regulation. Chem Biol Interact 130–132(1–3):707–722

    Article  PubMed  Google Scholar 

  • Matsumura Y, Hosokawa C, Sasaki-Mori M, Akahira A, Fukunaga K, Ikeuchi T, Oshiman K, Tsuchido T (2009) Isolation and characterization of novel bisphenol-A degrading bacteria from soils. Biocontrol Sci 14:161–169

    Article  CAS  PubMed  Google Scholar 

  • Morelle S, Carbonnelle E, Nassif X (2003) The REP2 repeats of the genome of Neisseria meningitidis are associated with genes coordinately regulated during bacterial cell interaction. J Bacteriol 185(8):2618–2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mythen SM, Devendran S, Méndez-García C, Cann I, Ridlon JM (2018) Targeted synthesis and characterization of a gene cluster encoding NAD(P)H-dependent 3α-, 3β-, and 12α-hydroxysteroid dehydrogenases from Eggerthella CAG:298, a Gut Metagenomic Sequence. Appl Environ Microbiol 84(7)

  • Pan T, Huang P, Xiong G, Maser E (2015) Isolation and identification of a repressor TetR for 3,17β-HSD expressional regulation in Comamonas testosteroni. Chem Biol Interact 234:205–212

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro AR, Tiritan ME, Castro PM (2010) Microbial degradation of 17β-estradiol and 17α-ethinylestradiol followed by a validated HPLC-DAD method. J Environ Sci Health A 45:265–273

    Article  CAS  Google Scholar 

  • Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626

    Article  CAS  PubMed  Google Scholar 

  • Staudinger BJ, Oberdoerster MA, Lewis PJ, Rosen H (2002) mRNA expression profiles for Escherichia coli ingested by normal and phagocyte oxidase-deficient human neutrophils. J Clin Invest 110(8):1151–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeshi Y, Fumiko N, Haruji S, Omura H (2004) Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl Environ Microbiol 10:1128

    Google Scholar 

  • Tamagawa Y, Yamaki R, Hirai H, Kawai S, Nishida T (2006) Removal of estrogenic activity of natural steroidal hormone estrone by ligninolytic enzymes from white rot fungi. Chemosphere 65:97–101

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Minh PN, Dötsch A, Hildebrand F, Panmanee W, Elfarash A, Schulz S, Plaisance S, Charlier D, Hassett D, Häussler S, Cornelis P (2012) Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res 40(10):4320–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Huang P, Xiong G, Maser E (2015) Identification and isolation of a regulator protein for 3,17β-HSD expressional regulation in Comamonas testosteroni. Chem Biol Interact 234:197–204

    Article  CAS  PubMed  Google Scholar 

  • Xiong G, Maser E (2015) Construction of a biosensor mutant of Comamonas testosteroni for testosterone determination by cloning the EGFP gene downstream to the regulatory region of the 3,17β-HSD gene. Chem Biol Interact 234:188–196

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Tao F, Xu P (2013) New constitutive vectors: useful genetic engineering tools for biocatalysis. Appl Environ Microbiol 79:2836–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zhang L, Hou J, Liang R (2017) iTRAQ-based quantitative proteomic analysis of the global response to 17β-estradiol in estrogen-degradation strain Pseudomonas putida SJTE-1. Sci Rep 7416821

  • Yang J, Li W, Ng TB, Deng X, Lin J, Ye X (2017) Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Front Microbiol 8:832

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye X, Xiong G, Hu Z (2017) A novel 17β-hydroxysteroid dehydrogenase in Rhodococcus sp. P14 for transforming 17β-estradiol to estrone. Chem Biol Interact 276:105–112

    Article  CAS  PubMed  Google Scholar 

  • Yin GG, Kookana RS, Ru YJ (2002) Occurrence and fate of hormone steroids in the environment. Environ Int 28:545–551

    Article  PubMed  Google Scholar 

  • Yu CP, Roh H, Chu KH (2007) 17β-Estradiol-degrading bacteria isolated from activated sludge. Environ Sci Technol 41:486–492

    Article  CAS  PubMed  Google Scholar 

  • Yu CP, Deeb RA, Chu KH (2013) Microbial degradation of steroidal estrogens. Chemosphere 91:1225–1235

    Article  CAS  PubMed  Google Scholar 

  • Yuanhua Y, Chuanzhi L, Baoxue W (2015) Characterization of 3,17β-hydroxysteroid dehydrogenase in Comamonas testosteroni. Chem Biol Interact 234:221–228

    Article  CAS  Google Scholar 

  • Zeng Q, Li Y, Gu G, Zhao J, Zhang C, Luan J (2009) Sorption and biodegradation of 17β-estradiol by acclimated aerobic activated sludge and isolation of the bacterial strain. Environ Eng Sci 26:783–790

    Article  CAS  Google Scholar 

  • Zhang Y, Ujor V Wick M, Ezeji TC. (2015) Thaddeus chukwuemeka ezeji, identification, purification and characterization of furfural transforming enzymes from Clostridium beijerinckii NCIMB 8052. Anaerobe 33:124-131

Download references

Funding

This work was supported by the National Science Foundation of China (Grant No. 31370152, 31570099) and the Shanghai Pujiang Program (14PJD020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubing Liang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zheng, D., Peng, W. et al. Characterization of 17β-hydroxysteroid dehydrogenase and regulators involved in estrogen degradation in Pseudomonas putida SJTE-1. Appl Microbiol Biotechnol 103, 2413–2425 (2019). https://doi.org/10.1007/s00253-018-9543-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9543-y

Keywords

Navigation