Skip to main content
Log in

Back to the past—forever young: cutting-edge biochemical and microbiological tools for cultural heritage conservation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ancient documents and milestones of human history such as manuscripts and textiles are fragile and during aging undergo chemical, physical, and biological deterioration. Among the different causes of damage, also human intervention plays a role since some restoration strategies proved to be transient and/or they generated further damage. Outdoor monuments undergo deterioration since they are exposed to pollution, weathering, microbial attack (giving rise to undesired pigmentation, discoloration or true dissolution, corrosion, and overall decay), as well as man-made damage (i.e., graffiti). This review article reports the best-fitting strategies used to restore wall paintings, outdoor monuments, textiles, and paper documents to their ancient beauty by employing “soft” biobased approaches such as viable bacteria or suitable enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Ind Microbiol Biotechnol 36:433–438

    Article  PubMed  CAS  Google Scholar 

  • Achal V, Mukherjee A, Reddy MS (2010) Biocalcification by Sporosarcina pasteurii using corn steep liquor as nutrient source. J Ind Biotechnol 6:170–174

    Article  Google Scholar 

  • Adolphe JP, Loubière JF, Paradas J, Soleilhavoup F (1990) Procédé de traitement biologique d’une surface artificielle. European Patent 90400G97.0. (after French patent 8903517, 1989), (France)

  • Ahmed HE, Kolisis FN (2011) An investigation into the removal of starch paste adhesive from historical textiles by using the enzyme of alpha-amylase. J Cult Herit 12:169–179

    Article  Google Scholar 

  • Ahmed HE, Gremos SS, Kolisis FN (2010) Enzymatic removal of the oily dirt from a Coptic tunic using the enzyme lipase. J Textile Apparel Tech Manage 6(3):1–17

  • Alfano G, Lustrato G, Belli C, Zanardini E, Cappitelli F, Mello E, Sorlini C, Ranalli G (2011) The bioremoval of nitrate and sulfate alterations on artistic stone work: the case-study of Matera Cathedral after six years from the treatment. Int Biodeterior Biodegrad 65:1004–1011

    Article  CAS  Google Scholar 

  • Antonioli P, Zapparoli G, Abbruscato P, Sorlini C, Ranalli G, Righetti PG (2005) Art-loving bugs: the resurrection of Spinello Aretino from Pisa’s cemetery. Proteomics 5:2453–2459

    Article  PubMed  CAS  Google Scholar 

  • Banik G, Cremonesi P, De La Chapelle A, Montalbano L (2003) Nuove Metodologie nel Restauro del Materiale Cartaceo. Il Prato, Padova

    Google Scholar 

  • Barbabietola N, Tasso F, Alisi C, Marconi P, Perito B, Pasquariello G, Sprocati AR (2016) A safe microbe-based procedure for a gentle removal of aged animal glues from ancient paper. Int Biodeterior Biodegrad 109:53–60

    Article  CAS  Google Scholar 

  • Bastian F, Jurado V, Nováková A, Alabouvette C, Saiz-Jimenez C (2010) The microbiology of Lascaux cave. Microbiology 156:644–652

    Article  PubMed  CAS  Google Scholar 

  • Bellucci R, Cremonesi P, Pignagnoli G (1999) A preliminary note on the use of enzymes in conservation: the removal of aged acrylic resin coatings with lipase. Stud Conserv 44:278–281

    CAS  Google Scholar 

  • Beutel S, Klein K, Knobbe G, Königfeld P, Petersen K, Ulber R, Scheper T (2002) Controlled enzymatic removal of damaging casein layers on medieval wall paintings. Biotechnol Bioeng 80:13–21

    Article  PubMed  CAS  Google Scholar 

  • Blüher A, Haller U, Banik G, Thobois E (1995) The application of carbopol poultices on paper objects. Restaur Int J Preserv Libr Arch Mater 16:234–247

    Google Scholar 

  • Blüher A, Grube A, Bornscheuer U, Banik G (1997) A reappraisal of the enzyme lipase for removing drying-oil stains on paper. Paper Conserv 21:37–47

    Article  Google Scholar 

  • Boquet E, Boronat A, Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527–529

    Article  Google Scholar 

  • Bosch-Roig P, Regidor Ros JL, Estellés RM (2013) Biocleaning of nitrate alterations on wall paintings by Pseudomonas stutzeri. Int Biodeterior Biodegrad 84:266–274

    Article  CAS  Google Scholar 

  • Bott G (1990) Amylase for starch removal from a set of 17th century embroidered panels. Conservator 14:23–29

    Article  Google Scholar 

  • Cappitelli F, Principi P, Pedrazzani R, Toniolo L, Sorlini C (2007a) Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci Total Environ 385:172–181

    Article  PubMed  CAS  Google Scholar 

  • Cappitelli F, Toniolo L, Sansonetti A, Gulotta D, Ranalli G, Zanardini E, Sorlini C (2007b) Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl Environ Microbiol 73:5671–5675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chand T, Cameotra SS (2011) Geomicrobiology of heritage monuments and artworks: mechanisms of biodeterioration, bioconservation strategies and applied molecular approaches. In: Bioremediation: biotechnology, engineering and environmental management, Nova Science Publishers, New York, pp 233–266

  • Chapman V (1986) Amylase in a viscous medium–textile applications. Conservator 10:7–11

    Article  Google Scholar 

  • Ciatti M, Conti S, Fineschi C, Nelson JK, Pini S (2010) Il ricamo in or nué su disegno di Raffaellino del Garbo. Aspetti storico-stilistici, tecnici, minimo intervento e conservazione preventiva. OPD Restauro 22:81–116

    Google Scholar 

  • Corbi M, Di Franco ML, Severi M, Santarelli ML, Filetici P (2005) Biotecnologie applicate alla rimozione di colle d’amido nel restauro della carta e del libro. Proceedings of the 3rd IGIIC National Congress-Lo Stato dell’Arte, pp 98–101

  • Daskalakis MI, Magoulas A, Kotoulas G, Katsikis I, Bakolas A, Karageorgis AP, Mavridou A, Doulia D, Rigas F (2014) Cupriavidus metallidurans biomineralization ability and its application as a bioconsolidation enhancer for ornamental marble stone. Appl Microbiol Biotechnol 98:6871–6883

    Article  PubMed  CAS  Google Scholar 

  • De La Chapelle A (2003) Utilizzo degli enzimi nel restauro delle opere grafiche policrome. In: Cremonesi P (ed) Materiali tradizionali ed innovativi nella pulitura dei dipinti e delle opere policrome mobili. Atti del Primo Congresso Internazionale Colore e Conservazione-materiali e metodi nel restauro delle opere policrome mobili, Piazzola sul Brenta

    Google Scholar 

  • De Santis P (1983) Some observation on the use of enzymes in paper conservation. J Am Inst Conserv 1:7–27

    Article  Google Scholar 

  • Dhami NK, Mukherjee A, Reddy MS (2012) Biofilm and microbial applications in biomineralized concrete. In: Seto J (ed) Advanced topics in biomineralization. InTech, New York, pp 137–164

    Google Scholar 

  • Dhami NK, Mukherjee A, Reddy MS (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:314

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2014) Application of calcifying bacteria for remediation of stones and cultural heritages. Front Microbiol 5:304

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Pippo F, Bohn A, Congestri R, De Philippis R, Albertano P (2009) Capsular polysaccharides of cultured phototrophic biofilms. Biofouling 25:495–504

    Article  PubMed  CAS  Google Scholar 

  • Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17:357–367

    Article  PubMed  CAS  Google Scholar 

  • Fernandes P (2006) Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol Biotechnol 73:291–296

    Article  PubMed  CAS  Google Scholar 

  • Ferrari M, Mazzoli R, Morales S, Fedi M, Liccioli L, Piccirillo A, Cavaleri T, Oliva C, Gallo P, Borla M, Cardinali M, Pessione E (2017) Enzymatic laundry for old clothes: immobilized alpha-amylase from Bacillus sp. for the biocleaning of an ancient Coptic tunic. Appl Microbiol Biotechnol 101:7041–7052

    Article  PubMed  CAS  Google Scholar 

  • Germinario G, van der Werf ID, Palazzo G, Ros JLR, Montes-Estelles RM, Sabbatini L (2017) Bioremoval of marker pen inks by exploiting lipase hydrolysis. Prog Org Coat 110:162–171

    Article  CAS  Google Scholar 

  • Giacomucci L, Toja F, Sanmartín P, Toniolo L, Prieto B, Villa F, Cappitelli F (2012) Degradation of nitrocellulose-based paint by Desulfovibrio desulfuricans ATCC13541. Biodegradation 23:705–716

    Article  PubMed  CAS  Google Scholar 

  • Giordano A, Rotolo V, Di Carlo E, Palla F (2018) Novel esterases for cultural heritage. X AIAr National Congress, Torino, Italy, February 14–17, 2018

  • Gioventù E, Lorenzi PF, Villa F, Sorlini C, Rizzi M, Cagnini A, Griffo A, Cappitelli F (2011) Comparing the bioremoval of black crusts on colored artistic lithotypes of the Cathedral of Florence with chemical and laser treatment. Int Biodeterior Biodegrad 65:832–839

    Article  CAS  Google Scholar 

  • Gostling K (1989) Bookbinders and adhesives: part 2. New Bookbind 9:30–39

    Google Scholar 

  • Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76

    Article  PubMed  CAS  Google Scholar 

  • Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7

    Article  CAS  Google Scholar 

  • Helmi FM, Elmitwalli HR, Elnagdy SM, El-hagrassy AF (2016) Biomineralization consolidation of Fresco wall paintings samples by Bacillus sphaericus. Geomicrobiol J 33:625–629

    Article  CAS  Google Scholar 

  • Hrdlickova Kuckova S, Crhova Krizkova M, Pereira CL, Hynek R, Lavrova O, Busani T, Branco LC, Sandu IC (2014) Assessment of green cleaning effectiveness on polychrome surfaces by MALDI-TOF mass spectrometry and microscopic imaging. Microsc Res Tech 77:574–585

    Article  PubMed  CAS  Google Scholar 

  • Iannucelli S, Sotgiu S (2009) La pulitura superficiale di opera grafiche a stampa con gel rigidi. In: Progetto Restauro, 49. Il Prato, Padova, pp 15–24

  • Jargeat P, Rekangalt D, Verner MC, Gay G, Debaud JC, Marmeisse R, Fraissinet-Tachet L (2003) Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr Genet 43:199–205

    PubMed  CAS  Google Scholar 

  • Jroundi F, Schiro M, Ruiz-Agudo E, Elert K, Martín-Sánchez I, González-Muñoz MT, Rodriguez-Navarro C (2017) Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities. Nat Commun 8:279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazzarini L, Laurenzi Tabasso M (1986) Il Restauro della Pietra. CEDAM, Padua

    Google Scholar 

  • Le Metayer-Levrel G, Castanier S, Orial G, Loubiere JF, Perthuisot JP (1999) Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol 126:25–34

    Article  Google Scholar 

  • Margesin R, Płaza GA, Kasenbacher S (2011) Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere 82:1583–1588

    Article  PubMed  CAS  Google Scholar 

  • Martin-Sanchez PM, Nováková A, Bastian F, Alabouvette C, Saiz-Jimenez C (2012) Use of biocides for the control of fungal outbreaks in subterranean environments: the case of the Lascaux Cave in France. Environ Sci Technol 46:3762–3770

    Article  PubMed  CAS  Google Scholar 

  • Mazzoli R, Giuffrida MG, Pessione E (2018) Back to the past. Find the guilty: microorganisms involved in the biodeterioration of archeological and historical items. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-018-9113-3

  • Mazzuca C, Micheli L, Cervelli E, Basoli F, Cencetti C, Coviello T, Iannuccelli S, Sotgiu S, Palleschi A (2014) Cleaning of paper artworks: development of an efficient gel-based material able to remove starch paste. ACS Appl Mater Interfaces 6:16519–16528

    Article  PubMed  CAS  Google Scholar 

  • Micallef R, Vella D, Sinagra E, Zammit G (2016) Biocalcifying Bacillus subtilis cells effectively consolidate deteriorated globigerina limestone. J Ind Microbiol Biotechnol 43:941–952

    Article  PubMed  CAS  Google Scholar 

  • Palla F, Barresi G (2017) Biotechnology and conservation of cultural heritage. Springer International Publishing, Switzerland

    Book  Google Scholar 

  • Palla F, Barresi G, Giordano A, Schiavone S, Trapani MR, Rotolo V, Parisi MG, Cammarata M (2016) Cold-active molecules for a sustainable preservation and restoration of historic-artistic manufacts. Int J Conserv Sci 7:239–246

    CAS  Google Scholar 

  • Palla F, Barresi G, Chisesi RM, Cammarata M, Di Carlo E, Drago S, Giordano A, Lombardo G, Rotolo V, Schiavone S, Stampone G, Trapani MR (2017) Innovative and integrated strategies: case studies. In: Palla F, Barresi G (eds) Biotechnology and conservation of cultural heritage, springer international publishing, Switzerland, pp 85–100

    Chapter  Google Scholar 

  • Ranalli G, Chiavarini M, Guidetti V, Marsala F, Matteini M, Zanardini E, Sorlini C (1997) The use of microorganisms for the removal of sulphates on artistic stone works. Int Biodeterior Biodegrad 40:255–261

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Munoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus induced carbonate biomineralization. Appl Environ Microbiol 69:2182–2193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenbaum MS (2006) Field meeting report: Bromfield sand and gravel pit, nr Ludlow, Shropshire, led by Ed Webb, 22nd April 2005. Proceedings of the Shropshire Geological Society 11:12–17

  • Sandrine D (2002) Enzyme used for adhesive removal in paper conservation: a literature review. J Soc Arch 2:187–195

    Article  Google Scholar 

  • Sanmartìn P, Cappitelli F, Mitchell R (2014) Current methods of graffiti removal: a review. Constr Build Mater 71:363–374

    Article  Google Scholar 

  • Schwarz I, Bluher A, Banik G, Thobois E, Maurer KH (1999) The development of a ready-for-use poultice for local removal of starch paste by enzymatic action. Restaurator 20:225–244

    CAS  Google Scholar 

  • Segal J, Cooper D (1977) The use of enzymes to release adhesives. Pap Conserv 2:47–50

    Article  Google Scholar 

  • Shibayama N, Eastop D (1996) Removal of flour paste residues form a painted banner with alpha amylase. Conservator 20:53–64

    Article  Google Scholar 

  • Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571

    Article  CAS  Google Scholar 

  • Tiano P, Biagiotti L, Mastromei G (1999) Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods 36:139–145

    Article  PubMed  CAS  Google Scholar 

  • Troiano F, Gulotta D, Balloi A, Polo A, Toniolo L, Lombardi E, Daffonchio D, Sorlini C, Cappitelli F (2013) Successful combination of chemical and biological treatments for the cleaning of stone artworks. Int Biodeterior Biodegrad 85:294–304

    Article  CAS  Google Scholar 

  • Troiano F, Vicini S, Gioventù E, Lorenzi PF, Improta CM, Cappitelli F (2014) A methodology to select bacteria able to remove synthetic polymers. Polym Degrad Stab 107:321–327

    Article  CAS  Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeter Biodegr 46:343–368

    Article  CAS  Google Scholar 

  • Webster A, May E (2006) Bioremediation of weathered-building stone surfaces. Trends Biotechnol 24:255–260

    Article  PubMed  CAS  Google Scholar 

  • Wendelbo O (1976) The use of proteolytic enzymes in the restoration of paper and papyrus. University Library of Bergen

  • Whaap F (2007) The treatment of two Coptic tapestry fragments. V&A Conserv J 55:11–13

    Google Scholar 

Download references

Funding

This work was financially supported by “Ricerca Locale-ex 60%” of the Turin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrica Pessione.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzoli, R., Giuffrida, M. & Pessione, E. Back to the past—forever young: cutting-edge biochemical and microbiological tools for cultural heritage conservation. Appl Microbiol Biotechnol 102, 6815–6825 (2018). https://doi.org/10.1007/s00253-018-9121-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9121-3

Keywords

Navigation