Skip to main content
Log in

Polyacrylonitrile (PAN) nanofibres spun with copper nanoparticles: an anti-Escherichia coli membrane for water treatment

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Copper nanoparticles (CNPs) were mixed with polyacrylonitrile (PAN) and electrospun into nanofibres (CuPAN nanofibres). PAN nanofibres containing 1.0, 3.0 and 5.0% copper (w/v) displayed beads-on-string morphology with protrusions of copper particles. The diameter of the CuPAN nanofibres differed according to the copper content, ranging from 386 nm (1.0%, w/v, copper) to 922 nm (5.0%, w/v, copper). No chemical interaction of copper with PAN was observed when studied with X-ray diffraction, ATR-FTIR (attenuated total reflection-Fourier transform infrared) spectroscopy and TGA (thermogravimetric analysis). None of the CuPAN nanofibres showed signs of degradation after 7 days in water. Bacteria suspended in random mobility buffer and filtered through a 3% CuPAN nanofibre membrane (25 mm diameter, 75–80 μm thickness), at a filtration rate of 20 ml min−1, reduced the cell numbers of enterotoxigenic Escherichia coli (ETEC) from 3.3 × to 2.1 × 106 cfu ml−1 and methicillin-resistant Staphylococcus aureus (MRSA) from 1.2 × 10 to 1.3 × 103 cfu ml−1. Membranes produced with 1.0, 3.0 and 5.0% (w/v) CuPAN inhibited the growth of enteroaggregative E. coli (EAEC), enterohemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), ETEC and MRSA, as shown with LIVE/DEAD™ BacLight™ staining. Real-time bactericidal activity of CuPAN membranes was recorded by staining the cells with SYTO 9 and PI, followed by flow cytometry. Filter membranes made from CuPAN fibres may be used to reduce pathogenic E. coli cell numbers in potable water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (2004) Division of Toxicology, Public health statement on copper

  • Ahire JJ, Hattingh M, Neveling DP, Dicks LMT (2016) Copper-containing anti-biofilm nanofiber scaffolds as a wound dressing material. PLoS One 11:e0152755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahire JJ, Robertson DD, van Reenen AJ, Dicks LMT (2017) Surfactin-loaded polyvinyl alcohol (PVA) nanofibers alters adhesion of Listeria monocytogenes to polystyrene. Mater Sci Eng C 77:27–33

    Article  CAS  Google Scholar 

  • Bekal S, Brousseau R, Masson L, Prefontaine G, Fairbrother J, Harel J (2003) Rapid identification of Escherichia coli pathotypes by virulence gene detection with DNA microarrays. J Clin Microbiol 41:2113–2125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bogdanović U, Lazić V, Vodnik V, Budimir M, Marković Z, Dimitrijević S (2014) Copper nanoparticles with high antimicrobial activity. Mater Lett 128:75–78

    Article  CAS  Google Scholar 

  • Borkow G (2012) Using copper to fight microorganisms. Curr Chem Biol 6:93–103

    Article  CAS  Google Scholar 

  • Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnol 25:135101

    Article  CAS  Google Scholar 

  • Dankovich TA, Smith JA (2014) Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Res 63:245–251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deitzel JM, Kleinmeyer J, Harris DEA, Tan NB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272

    Article  CAS  Google Scholar 

  • Dollwet HHA, Sorenson JRJ (1985) Historic uses of copper compounds in medicine. Trace Elem Med 2:80–87

    Google Scholar 

  • He JH, Wan YQ, Yu JY (2008) Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibers. Fibers Polym 9:140–142

    Article  CAS  Google Scholar 

  • Henrici-Olivé G, Olivé S (1979) Molecular interactions and macroscopic properties of polyacrylonitrile and model substances. In: Chemistry. Advances in Polymer Science, vol 32. Springer, Berlin

  • Heunis TDJ, Botes M, Dicks LMT (2010) Encapsulation of Lactobacillus plantarum 423 and its bacteriocin in nanofibers. Probiotics Antimicrob Proteins 2:46–51

    Article  PubMed  CAS  Google Scholar 

  • Huisman L, Wood WE (1974) Slow sand filtration (Vol. 16), Geneva, World Health Organization

  • Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140

    Article  PubMed  CAS  Google Scholar 

  • Kenry, Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17

    Article  CAS  Google Scholar 

  • Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 72:1–28

    Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384

    Article  PubMed  CAS  Google Scholar 

  • Liu YC, Lu DN (2006) Surface energy and wettability of plasma-treated polyacrylonitrile fibers. Plasma Chem Plasma Process 26:119–126

    Article  CAS  Google Scholar 

  • Makaremi M, De Silva RT, Pasbakhsh P (2015) Electrospun nanofibrous membranes of polyacrylonitrile/halloysite with superior water filtration ability. J Phys Chem C 119:7949–7958

    Article  CAS  Google Scholar 

  • Naraghi M, Chasiotis I (2009) Mechanics of PAN nanofibers. In Major Accomplishments in composite materials and sandwich structures. Springer Netherlands, pp 757–778

  • Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201

    PubMed  PubMed Central  CAS  Google Scholar 

  • Qadri F, Svennerholm AM, Faruque ASG, Sack RB (2005) Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev 18:465–483

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50

    Article  CAS  Google Scholar 

  • Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res/Rev Mutat Res 636:178–242

    Article  CAS  Google Scholar 

  • Saquing CD, Manasco JL, Khan SA (2009) Electrospun nanoparticle–nanofiber composites via a one-step synthesis. Small 5:944–951

    Article  PubMed  CAS  Google Scholar 

  • Sharan R, Chhibber S, Attri S, Reed RH (2010) Inactivation and sub-lethal injury of Escherichia coli in a copper water storage vessel: effect of inorganic and organic constituents. Antonie Van Leeuwenhoek 98:103–115

    Article  PubMed  CAS  Google Scholar 

  • Sheikh FA, Kanjwal MA, Saran S, Chung WJ, Kim H (2011) Polyurethane nanofibers containing copper nanoparticles as future materials. Appl Surf Sci 257:3020–3026

    Article  CAS  Google Scholar 

  • Sobsey MD, Handzel T, Venczel L (2003) Chlorination and safe storage of household drinking water in developing countries to reduce waterborne disease. Water Sci Technol 47:221–228

    Article  PubMed  CAS  Google Scholar 

  • Supova M, Martynkova GS, Barabaszova K (2011) Effect of nano-fillers dispersion in polymer matrices: a review. Sci Adv Mater 3:1–25

    Article  CAS  Google Scholar 

  • USEPA (2002) Title 40, Protection of the Environment. 143.3

  • Wang Y, Qiao W, Wang B, Zhang Y, Shao P, Yin T (2011) Electrospun composite nanofibers containing nanoparticles for the programmable release of dual drugs. Polymer J 43:478–483

    Article  CAS  Google Scholar 

  • World health organization (WHO) (2017a) Water sanitation hygiene: boil water-technical brief. WHO reference number, WHO/WC/WSH/15.02, Available from, http://apps.who.int/iris/bitstream/10665/155821/1/WHO_FWC_WSH_15.02_eng.pdf?ua=1 (Accessed 16 Nov. 2017)

  • World health organization (WHO) (2017b) Diarrhoeal disease fact sheet. Available from, http://www.who.int/mediacentre/factsheets/fs330/en/ (Accessed 16 Nov. 2017)

  • World health organization (WHO) (2017c) Drinking-water fact sheet. Available from, http://www.who.int/mediacentre/factsheets/fs391/en/ (Accessed 16 Nov. 2017)

  • Yousuf B, Ahire JJ, Dicks LM (2016) Understanding the antimicrobial activity behind thin-and thick-rolled copper plates. Appl Microbiol Biotechnol 100:5569–5580

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Ahire JJ is grateful to Stellenbosch University for a Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. T. Dicks.

Ethics declarations

Human participants and animal studies

The research conducted for this article did not involve studies on humans or animals.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahire, J.J., Neveling, D.P. & Dicks, L.M.T. Polyacrylonitrile (PAN) nanofibres spun with copper nanoparticles: an anti-Escherichia coli membrane for water treatment. Appl Microbiol Biotechnol 102, 7171–7181 (2018). https://doi.org/10.1007/s00253-018-9051-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9051-0

Keywords

Navigation