Skip to main content

Advertisement

Log in

Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Foodstuffs and water are the key sources of cadmium biomagnifiaction. The available strategies to mitigate this problem are unproductive and expensive for practical large-scale use. Biological decontamination of metals through environmental microbes has been known since long time, whereas lactic acid bacteria (LAB) have not been extensively studied for this purpose. The LAB are known for maintaining homeostasis and suppression of pathogens in humans and animals. They also play a vital role in bioremediation of certain heavy metals. Recently in-vivo research findings strongly complement the in-vitro results in relation to decreased total body cadmium burden in animal model. This review summarizes the currently available information on impact of toxic metal (Cd) on human and animal health as well as cadmium sequestration through microbes placed broadly, whereas preeminent attention grabbed on LAB-cadmium interaction to explore their possible role in bioremediation of cadmium from foods and environment to safeguard human as well as environment health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AlFaleh K, Anabrees J (2014) Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evid Based Child Health Cochrane Database Syst Rev 9:584–671

    Article  Google Scholar 

  • Allen S, Martinez E, Gregorio G (2010) Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev 11:CD003048

    Google Scholar 

  • Amini M, Younesi H, Bahramifar N (2009) Statistical modeling and optimization of the cadmium biosorption process in an aqueous solution using Aspergillus niger. Colloids Surf A Physicochem Eng Asp 337:67–73

    Article  CAS  Google Scholar 

  • Archibald FS, Duong MN (1984) Manganese acquisition by Lactobacillus plantarum. J Bacteriol 158:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Axelsson LT (2004) Lactic acid bacteria: classification and physiology. In: Salminen, S., Wright, A.V. and Ouwehand, A. (eds.) Lactic acid bacteria: microbiological and functional aspects, 3rd Edition, Marcel Dekker, New York, 1–66

  • Azab MS, Peterson PJ (1989) The removal of cadmium from water by the use of biological sorbents. Water Sci Technol 21(12):1705–1706

    CAS  Google Scholar 

  • Babel S (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243

    Article  CAS  PubMed  Google Scholar 

  • Baldwin DR, Marshall WJ (1999) Heavy metal poisoning and its laboratory investigation. Ann Clin Biochem 36:267–300

    Article  CAS  PubMed  Google Scholar 

  • Barros Júnior LM, Macedo GR, Duarte MML, Silva EP, Lobato AKCL (2003) Biosorption of cadmium using the fungus aspergillus niger. Braz J Chem Eng 20:229–239

    Article  Google Scholar 

  • Basso M, Cerrella E (2002) Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater. Ind Eng Chem Res 41:3580–3585

    Article  CAS  Google Scholar 

  • Bernaola Aponte G, Bada Mancilla CA, Carreazo NY, Rojas Galarza RA (2013) Probiotics for treating persistent diarrhoea in children. In: Bernaola Aponte G (ed) Cochrane database of systematic reviews. John Wiley & Sons, Ltd, Chichester

    Google Scholar 

  • Bernard A (2004) Renal dysfunction induced by cadmium: biomarkers of critical effects. Biometals 17:519–523

    Article  CAS  PubMed  Google Scholar 

  • Bernard A (2008) Cadmium & its adverse effects on human health. Indian J Med Res 128:19106447

    Google Scholar 

  • Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43:147–171

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ, Fyfe WS (1985) Metal fixation by bacterial cell walls. Can J Earth Sci 22:1893–1898

    Article  CAS  Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhakta JN, Munekage Y, Ohnishi K, Jana BB (2012a) Isolation and identification of cadmium- and lead-resistant lactic acid bacteria for application as metal removing probiotic. Int J Environ Sci Technol 9:433–440

    Article  CAS  Google Scholar 

  • Bhakta JN, Ohnishi K, Munekage Y, Iwasaki K, Wei MQ (2012b) Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. J Appl Microbiol 112:1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B, Tomar SK, Mandal S (2016) Phenotypic and genotypic screening of human-originated lactobacilli for vitamin B12 production potential: process validation by micro-assay and UFLC. Appl Microbiol Biotechnol 100:6791–6803

    Article  CAS  PubMed  Google Scholar 

  • Boffetta P (1993) Carcinogenicity of trace elements with reference to evaluations made by the International Agency for Research on Cancer. Scand J Work Environ Health 19:67–70

    Article  CAS  PubMed  Google Scholar 

  • Bon E, Delaherche A, Bilhère E, De Daruvar A, Lonvaud-Funel A, Le Marrec C (2009) Oenococcus oeni genome plasticity is associated with fitness. Appl Environ Microbiol 75:2079–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyanov MI, Kelly SD, Kemner KM, Bunker BA, Fein JB, Fowle DA (2003) Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochim Cosmochim Acta 67:3299–3311

    Article  CAS  Google Scholar 

  • Buckler H, Smith W, Rees W (1986) Self poisoning with oral cadmium chloride. BMJ Clin Res 292(6535):1559

    Article  CAS  Google Scholar 

  • Burke BE, Pfister RM (1986) Cadmium transport by a Cd2+-sensitive and a Cd2+-resistant strain of Bacillus subtilis. Can J Microbiol 32:539–542

    Article  CAS  PubMed  Google Scholar 

  • Castro-González MI, Méndez-Armenta M (2008) Heavy metals: implications associated to fish consumption. Environ Toxicol Pharmacol 26:263–271

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Law R, Chang C (1997) Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res 31:1651–1658

    Article  CAS  Google Scholar 

  • Chen L, Xu B, Liu L, Luo Y, Zhou H, Chen W, Shen T, Han X, Kontos CD, Huang S (2011) Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free Radic Biol Med 50:624–632

    Article  CAS  PubMed  Google Scholar 

  • Cheung CW, Porter JF, McKay G (2000) Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. J Chem Technol Biotechnol 75:963–970

    Article  CAS  Google Scholar 

  • Chubar N, Behrends T, Van Cappellen P (2008) Biosorption of metals (Cu2+, Zn2+) and anions (F-, H2PO4 -) by viable and autoclaved cells of the Gram-negative bacterium Shewanella putrefaciens. Colloids Surf B Biointerfaces 65:126–133

    Article  CAS  PubMed  Google Scholar 

  • Cordero B, Lodeiro P, Herrero R (2004) Biosorption of cadmium by Fucus spiralis. Environ Chem 1:180–187

    Article  CAS  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  PubMed  Google Scholar 

  • Dhankhar R, Hooda A (2011) Fungal biosorption--an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32:467–491

    Article  CAS  PubMed  Google Scholar 

  • Dinleyici EC, Eren M, Ozen M, Yargic ZA, Vandenplas Y (2012) Effectiveness and safety of Saccharomyces boulardii for acute infectious diarrhea. Expert Opin Biol Ther 12:395–410

    Article  CAS  PubMed  Google Scholar 

  • El-Helow ER, Sabry SA, Amer RM (2000) Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis: regulation and optimization of cell surface affinity for metal cations. Biometals 13:273–280

    Article  CAS  PubMed  Google Scholar 

  • Elinder CG (1992) Cadmium as an environmental hazard. IARC Sci Publ 123–132

  • Fagt S, Gunnarsdottir I, Hallas-Møller T, Helldán A, Halldorsson TI, Knutsen H, Lillegaard ITL, Lindroos AK, Mikkilä V, Sand S, Salmenhaara M, Steingrimsdottir L, Vikstedt T, Ovaskainen ML (2012) Nordic dietary surveys. Study designs, methods, results and use in food-based risk assessments. Copenhagen: Nordic Council of Ministers

    Google Scholar 

  • FAO/WHO (2001) Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. pp 1–34

  • Farajzadeh M, Monji A (2004) Adsorption characteristics of wheat bran towards heavy metal cations. Sep Purif Technol 38:197–207

    Article  CAS  Google Scholar 

  • Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L RC (2012) Toxicological Profile for Cadmium. Aust J Public Health 1–487

  • Fein JB, Martin AM, Wightman PG (2001) Metal adsorption onto baterial surfaces: development of a predictive approach. Geochim Cosmochim Acta 65:4267–4273

    Article  CAS  Google Scholar 

  • Ferro-García MA, Rivera-Utrilla J, Rodríguez-Gordillo J, Bautista-Toledo I (1988) Adsorption of zinc, cadmium, and copper on activated carbons obtained from agricultural by-products. Carbon 26:363–373

    Article  Google Scholar 

  • Flora SJS, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7:2745–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friberg L, Elinder C, Kjellstrom T, Nordberg G (1985) Cadmium and health: a toxicological and epidemiological appraisal. In: Effects and response, vol II. CRC press, Boca Raton

    Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Gerbino E, Mobili P, Tymczyszyn E, Fausto R, Gómez-Zavaglia A (2011) FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions. J Mol Struct 987:186–192

    Article  CAS  Google Scholar 

  • Ghosh D, Saha R, Ghosh A, Nandi R, Saha B (2015) A review on toxic cadmium biosorption from contaminated wastewater. Desalin. Water Treat. 53:413–420

  • Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldenberg JZ, Ma SSY, Saxton JD, Martzen MR, Vandvik PO, Thorlund K, Guyatt GHJB (2013) Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev 5:1–110

  • Guo Z, Liu XM, Zhang QX, Shen Z, Tian FW, Zhang H, Sun ZH, Zhang HP, Chen W (2011) Influence of consumption of probiotics on the plasma lipid profile: a meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis 21:844–50

  • Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J. Hazard. Mater. 152:407–414

  • Halttunen T, Salminen S, Tahvonen R (2007) Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int J Food Microbiol 114:30–35

  • Hamlett NV, Landale EC, Davis BH, Summers AO (1992) Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding. J Bacteriol 174:6377–6385

  • Haney J (2016) Development of an inhalation unit risk factor for cadmium. Regul Toxicol Pharmacol 77:175–183

    Article  CAS  PubMed  Google Scholar 

  • Hetzer A, Daughney C (2006) Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Appl Environ Microbiol 72:4020–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho YS, Wang CC (2004) Pseudo-isotherms for the sorption of cadmium ion onto tree fern. Process Biochem 39:759–763

    CAS  Google Scholar 

  • Hoveyda N, Heneghan C, Mahtani KR, Perera R, Roberts N, Glasziou P (2009) A systematic review and meta-analysis: probiotics in the treatment of irritable bowel syndrome. BMC Gastroenterol 9:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Hrynkiewicz K, Baum C (2014) Application of microorganisms in bioremediation of environment from heavy metals. In: Environmental deterioration and human health: natural and anthropogenic determinants. Springer Netherlands, Netherlands, pp 215–227

    Chapter  Google Scholar 

  • IARC (2012) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. A review of human carcinogens. Part C Arsenic Metals Fibres Dusts 100:1–527

    Google Scholar 

  • Ibrahim F, Halttunen T, Tahvonen R, Salminen S (2006) Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Can J Microbiol 52:877–885

    Article  CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer, & International Agency for Research on Cancer (1993) Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry, vol 58. World Health Organization, International Agency for Research on Cancer, Geneva

    Google Scholar 

  • Issazadeh K, Jahanpour N, Pourghorbanali F, Raeisi G (2013) Heavy metals resistance by bacterial strains. Ann Biol Res 4:60–63

    Google Scholar 

  • Itoh M, Yuasa M, Kobayashi T (1975) Adsorption of metal ions on yeast cells at varied cell concentrations. Plant Cell Physiol 16:1167–1169

    Article  CAS  Google Scholar 

  • Jacobs SE, Tobin JM, Opie GF, Donath S, Tabrizi SN, Pirotta M, Morley CJ, Garland SM (2013) Probiotic effects on late-onset sepsis in very preterm infants: a randomized controlled trial. Pediatrics 132:1055–1062

    Article  PubMed  Google Scholar 

  • Jain SK, Vasudevan P, Jha NK (1990) Azolla pinnata r.br. and lemna minor l. for removal of lead and zinc from polluted water. Water Res 24:177–183

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Järup L, Alfvén T (2004) Low level cadmium exposure, renal and bone effects-the OSCAR study. Biometals 17(5):505–509

    Article  PubMed  Google Scholar 

  • Joint FAO/WHO Expert Committee on Food Additives (1993) Evaluation of certain food additives and contaminants: forty-first report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, Geneva

    Google Scholar 

  • Joseph P (2009) Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol 238:272–279

    Article  CAS  PubMed  Google Scholar 

  • Karska-Wysocki B, Bazo M, Smoragiewicz W (2010) Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol Res 165:674–686

    Article  PubMed  Google Scholar 

  • Karthikeyan KG, Elliott HA, Cannon FS (1996) Adsorption and coprecipitation of copper with the hydrous oxides of iron and aluminum. Environ Sci Technol 31:2721–2725

    Article  Google Scholar 

  • Kinoshita H, Sohma Y, Ohtake F, Ishida M, Kawai Y, Kitazawa H, Saito T, Kimura K (2013) Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Res Microbiol 164:701–709

    Article  CAS  PubMed  Google Scholar 

  • Ko DC, Porter JF, McKay G (2003) Mass transport model for the fixed bed sorption of metal ions on bone char. Ind Eng Chem Res 42:3458–3469

    Article  CAS  Google Scholar 

  • König H, Fröhlich J (2009) Lactic acid bacteria. In: Biology of microorganisms on grapes, in must and in wine. Springer Berlin Heidelberg, Berlin, pp 3–29

    Chapter  Google Scholar 

  • Kumar M, Verma V, Nagpal R, Kumar A, Behare PV, Singh B, Aggarwal PK (2011) Anticarcinogenic effect of probiotic fermented milk and chlorophyllin on aflatoxin-B1-induced liver carcinogenesis in rats. Br J Nutr 1–11

  • Kumar N, Kumari V, Ram C, Bharath KBS, Verma S (2017a) Impact of oral cadmium intoxication on levels of different essential trace elements and oxidative stress measures in mice: a response to dose. Environ Sci Pollut Res (In Press). https://doi.org/10.1007/s11356-017-0868-3

  • Kumar N, Tomar SK, Thakur K, Singh AK (2017b) The ameliorative effects of probiotic Lactobacillus fermentum strain RS-2 on alloxan induced diabetic rats. J Funct Foods 28:275–284

    Article  CAS  Google Scholar 

  • Kumar N, Kumar V, Panwar R, Ram C (2017c) Efficacy of indigenous probiotic Lactobacillus strains to reduce cadmium bioaccessibility—an in vitro digestion model. Environ Sci Pollut Res 24:1241–1250

    Article  CAS  Google Scholar 

  • Landersjö C, Yang Z, Huttunen E, Widmalm G (2002) Structural studies of the exopolysaccharide produced by Lactobacillus rhamnosus strain GG (ATCC 53103). Biomacromolecules 3:880–884. https://doi.org/10.1021/bm020040q

    Article  PubMed  CAS  Google Scholar 

  • Lebeer S, Vanderleyden J (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171–184

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Low K (1989) Removal of copper from solution using moss. Environ Technol 10:395–404

    Article  CAS  Google Scholar 

  • Licata P, Trombetta D, Cristani M, Giofrè F, Martino D, Calò M, Naccari F (2004) Levels of “toxic” and “essential” metals in samples of bovine milk from various dairy farms in Calabria, Italy. Environ Int 30:1–6

    Article  CAS  PubMed  Google Scholar 

  • Licata P, Di Bella G, Potortì A, Turco VL (2012) Determination of trace elements in goat and ovine milk from Calabria (Italy) by ICP-AES. Food Addit Contam Part B 5:268–271

    Article  CAS  Google Scholar 

  • Liu C-Q, Khunajakr N, Chia LG, Deng Y-M, Charoenchai P, Dunn NW (1997) Genetic analysis of regions involved in replication and cadmium resistance of the plasmid pND302 from Lactococcus lactis. Plasmid 38:79–90

    Article  PubMed  Google Scholar 

  • Liu D, Sun D, Li Y (2010) Removal of Cu(II) and Cd(II) from aqueous solutions by polyaniline on sawdust. Sep Sci Technol 46:321–329

    Article  CAS  Google Scholar 

  • Lodeiro P, Cordero B, Grille Z, Herrero R (2004) Physicochemical studies of cadmium (II) biosorption by the invasive alga in Europe, Sargassum muticum. Biotechnol Bioeng 88:237–247

    Article  CAS  PubMed  Google Scholar 

  • Loukidou M, Karapantsios T (2005) Cadmium (II) biosorption by Aeromonas caviae: kinetic modeling. Sep Sci Technol 40:1293–1311

    Article  CAS  Google Scholar 

  • Low K, Lee C, Liew S (2000) Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem 36:59–64

    Article  CAS  Google Scholar 

  • Luo F, Liu Y, Li X, Xuan Z, Ma J (2006) Biosorption of lead ion by chemically-modified biomass of marine brown algae Laminaria japonica. Chemosphere 64:1122–1127

    Article  CAS  PubMed  Google Scholar 

  • Manasi, Rajesh V, Santhana Krishna Kumar A, Rajesh N (2014) Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent. Chem Eng J 235:176–185

    Article  CAS  Google Scholar 

  • Marg BZ (2011) Hazardous metals and minerals pollution in india: sources, toxicity and management. A position paper. Indian National Science Academy, New Delhi

    Google Scholar 

  • McLean P, Calver A, Alpers D (2009) The emerging role of the microbial-gastrointestinal-neural axis. Gastroenterol Insights 1:3

    Article  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    Article  CAS  PubMed  Google Scholar 

  • Méndez-Armenta M, Ríos C (2007) Cadmium neurotoxicity. Environ Toxicol Pharmacol 23:350–358

    Article  PubMed  CAS  Google Scholar 

  • Meriluoto J, Gueimonde M, Haskard CA, Spoof L, Sjövall O, Salminen S (2005) Removal of the cyanobacterial toxin microcystin-LR by human probiotics. Toxicon 46:111–114

  • Meshref A, Moselhy W, Hassan N (2014) Heavy metals and trace elements levels in milk and milk products. J Food Meas Charact 8:381–388

    Article  Google Scholar 

  • Mishra B, Boyanov M, Bunker BA, Kelly SD, Kemner KM, Fein JB (2010) High- and low-affinity binding sites for cd on the bacterial cell walls of Bacillus subtilis and Shewanella oneidensis. Geochim Cosmochim Acta 74:4219–4233

    Article  CAS  Google Scholar 

  • Moayyedi P, Ford A, Talley N, Cremonini F (2010) The efficacy of probiotics in the therapy of irritable bowel syndrome: a systematic review. Gut 59:325–332

    Article  CAS  PubMed  Google Scholar 

  • Módenes AN, de Abreu Pietrobelli JMT, Espinoza-Quiñones FR (2009) Cadmium biosorption by non-living aquatic macrophytes Egeria densa. Water Sci Technol 60:293–300

    Article  PubMed  CAS  Google Scholar 

  • Monachese M, Burton JP, Reid G (2012) Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl Environ Microbiol 78:6397–6404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mowll JL, Gadd GM (1984) Cadmium uptake by Aureobasidium pullulans. Microbiology 130:279–284

    Article  CAS  Google Scholar 

  • Mrvčić J, Stanzer D, Šolić E, Stehlik-Tomas V (2012) Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World J Microbiol Biotechnol 28:2771–2782

    Article  PubMed  CAS  Google Scholar 

  • Nagpal R, Behare PV, Kumar M, Mohania D, Yadav M, Jain S, Menon S, Parkash O, Marotta F, Minelli E, Henry CJK, Yadav H (2012) Milk, milk products, and disease free health: an updated overview. Crit Rev Food Sci Nutr 52:321–333

    Article  CAS  PubMed  Google Scholar 

  • Naiya TK, Chowdhury P, Bhattacharya A (2009) Saw dust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn (II) and Cd (II) ions from aqueous solutions. Chem Eng J 148:68–79

    Article  CAS  Google Scholar 

  • Nasrazadani A, Tahmourespour A, Hoodaji M (2011) Determination of bacteria resistance threshold to lead, zinc and cadmium in three industrial wastewater samples. J Environ Stud 36:75–86

    CAS  Google Scholar 

  • Nezamzadeh-Ejhieh A, Khorsandi S (2014) Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite. J Ind Eng Chem 20:937–46.

  • Niu H, Xu X, Wang J (1993) Removal of lead from aqueous solutions by Penicillium biomass. Biotechnol Bioeng 42:785–7

  • Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci 86:3544–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orisakwe OE (2014) Lead and cadmium in public health in Nigeria: physicians neglect and pitfall in patient management. N Am J Med Sci 6:61–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Osborn A, Bruce K, Strike P (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19:239–262

    Article  CAS  PubMed  Google Scholar 

  • Özdemir S, Kılınç E, Poli A, Nicolaus B (2013) Biosorption of heavy metals (Cd2+, Cu2+, Co2+, and Mn2+) by thermophilic bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus: equilibrium and kinetic studies. Bioremediat J 17:86–96

    Article  CAS  Google Scholar 

  • Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376:26–32

    Article  CAS  PubMed  Google Scholar 

  • Park JD, Cherrington NJ, Klaassen CD (2002) Intestinal absorption of cadmium is associated with divalent metal transporter 1 in rats. Toxicol Sci 68:288–294

    Article  CAS  PubMed  Google Scholar 

  • Parmar M, Thakur LS (2013) Heavy metal Cu, Ni and Zn: toxicity, health hazards and their removal techniques by low cost adsorbents: a short overview. Int J Plant Anim Environ Sci 3:2231–4490

    Google Scholar 

  • Parungao M, Tacata P (2007) Biosorption of copper, cadmium and lead by copper-resistant bacteria isolated from Mogpog River, Marinduque. Philipp J Sci 136:155

    Google Scholar 

  • Pelucchi C, Chatenoud L, Turati F, Galeone C, Moja L, Bach JF, La Vecchia C (2012) Probiotics supplementation during pregnancy or infancy for the prevention of atopic dermatitis. Epidemiol 23:402–414. https://doi.org/10.1097/EDE.0b013e31824d5da2

    Article  Google Scholar 

  • Pino G, de Mesquita L, Torem M, Pinto G (2006) Biosorption of cadmium by green coconut shell powder. Miner Eng 19:380–387

    Article  CAS  Google Scholar 

  • Pophaly SD, Poonam, Singh P, Kumar H, Tomar SK, Singh R (2014) Selenium enrichment of lactic acid bacteria and bifidobacteria: a functional food perspective. Trends Food Sci Technol 39:135–145

    Article  CAS  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimi E (2013) Lead and cadmium concentrations in goat, cow, sheep, and buffalo milks from different regions of Iran. Food Chem 136(2):389–391

    Article  CAS  PubMed  Google Scholar 

  • Rao KS, Anand S, Venkateswarlu P (2010) Adsorption of cadmium (II) ions from aqueous solution by Tectona Grandis LF (teak leaves powder). Bioresources 5:438–454

    CAS  Google Scholar 

  • Romera E, González F, Ballester A, Blázquez ML, Muñoz JA (2006) Biosorption with algae: a statistical review. Crit Rev Biotechnol 26:223–235

    Article  CAS  PubMed  Google Scholar 

  • Russo P, Iturria I, Mohedano M (2015) Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl Microbiol Biotechnol 99:3479–3490

    Article  CAS  PubMed  Google Scholar 

  • Sahmoun A, Case L, Jackson S (2005) Cadmium and prostate cancer: a critical epidemiologic analysis. Cancer Investig 23:256–263

    Article  CAS  Google Scholar 

  • Saini K, Tomar SK, Sangwan V, Bhushan B (2014) Evaluation of lactobacilli from human sources for uptake and accumulation of selenium. Biol Trace Elem Res 160:433–436

    Article  CAS  PubMed  Google Scholar 

  • Salah F, Esmat I, Mohamed A (2013) Heavy metals residues and trace elements in milk powder marketed in Dakahlia governorate. Int Food Res J 20:1807–1812

    Google Scholar 

  • Sanders ME, Lenoir-Wijnkoop I, Salminen S, Merenstein DJ, Gibson GR, Petschow BW, Nieuwdorp M, Tancredi DJ, Cifelli CJ, Jacques P, Pot B (2014) Probiotics and prebiotics: prospects for public health and nutritional recommendations. Ann N Y Acad Sci 1309:19–29

    Article  CAS  PubMed  Google Scholar 

  • Satarug S, Moore M (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect:1099–1103

  • Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83

    Article  CAS  PubMed  Google Scholar 

  • Satarug S, Garrett SH, Sens MA, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 182:182–190

    Google Scholar 

  • Schulte-Schrepping KH, Piscator M, Schulte-Schrepping K, Piscator M (2000) Cadmium and cadmium compounds. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Selatnia A, Bakhti MZ, Madani A, Kertous L, Mansouri Y (2004) Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy 75:11–24

    Article  CAS  Google Scholar 

  • Serino M, Luche E, Gres S, Baylac A, Berge M, Cenac C, Waget A, Klopp P, Iacovoni J, Klopp C, Mariette J, Bouchez O, Lluch J, Ouarne F, Monsan P, Valet P, Roques C, Amar J, Bouloumie A, Theodorou V, Burcelin R (2011) Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61:543–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah J, Jan M, ul Haq A, Sadia M (2011) Biosorption of cadmium from aqueous solution using mulberry wood sawdust: equilibrium and kinetic studies. Sep Sci Technol 46:1631–1637

    Article  CAS  Google Scholar 

  • Shahbazi Y, Ahmadi F, Fakhari F (2016) Voltammetric determination of Pb, Cd, Zn, Cu and Se in milk and dairy products collected from Iran: an emphasis on permissible limits and risk assessment of exposure to heavy metals. Food Chem 192:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Shanker A (2008) Mode of action and toxicity of trace elements. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. John Wiley & Sons, Inc, Hoboken

    Google Scholar 

  • Shiby VK, Mishra HN (2013) Fermented milks and milk products as functional foods--a review. Crit Rev Food Sci Nutr 53:482–496

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kumar R, Agrawal M, Marshall FM (2010) Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48:611–619

    Article  CAS  PubMed  Google Scholar 

  • Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smith C, Perfetti T, Garg R, Hansch C (2003) IARC carcinogens reported in cigarette mainstream smoke and their calculated log P values. Food Chem Toxicol 41:807–817

    Article  CAS  PubMed  Google Scholar 

  • Solioz M, Mermod M, Abicht HK, Mancini S (2011) Responses of lactic acid bacteria to heavy metal stress. In: Stress Responses of Lactic Acid Bacteria. Springer US, New York, pp 163–195

    Chapter  Google Scholar 

  • Spain A, Alm E (2003) Implications of microbial heavy metal tolerance in the environment. 2:1–6

  • Staessen J, Amery A, Bernard A, Bruaux P, Buchet J, Claeys F, De Plaen P, Ducoffre G, Fagard R, Lauwerys RR, Lijnen P, Nick L, RA Saint, Roels H, Rondia D, Sartor F (1991) Metabolism: a population study. 710–714

  • Staessen JA, Roels HA, Emelianov D, Kuznetsova T, Thijs L, Vangronsveld J, Fagard R (1999) Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Lancet 353:1140–1144

    Article  CAS  PubMed  Google Scholar 

  • Sun G, Shi W (1998) Sunflower stalks as adsorbents for the removal of metal ions from wastewater. Ind Eng Chem Res 37:1324–1328

    Article  CAS  Google Scholar 

  • Suturović Z, Kravić S, Milanović S, Crossed D, Signurović A, Brezo T (2014) Determination of heavy metals in milk and fermented milk products by potentiometric stripping analysis with constant inverse current in the analytical step. Food Chem 155:120–125

    Article  PubMed  CAS  Google Scholar 

  • Tan G, Yuan H, Liu Y, Xiao D (2011) Removal of cadmium from aqueous solution using wheat stem, corncob, and rice husk. Sep Sci Technol 46:2049–2055

    Article  CAS  Google Scholar 

  • Teemu H, Seppo S, Jussi M, Raija T, Kalle L (2008) Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. Int J Food Microbiol 125:170–175

    Article  CAS  PubMed  Google Scholar 

  • Thakur K, Tomar SK (2016) Invitro study of riboflavin producing lactobacilli as potential probiotic. LWT Food Sci Technol 68:570–578

    Article  CAS  Google Scholar 

  • Thakur K, Tomar SK, De S (2016) Lactic acid bacteria as a cell factory for riboflavin production. Microb Biotechnol 9:441–451

    Article  CAS  PubMed  Google Scholar 

  • Thevenon F, Graham N, Chiaradia M (2011) Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last. Sci Total Environ 412:239–247

    Article  PubMed  CAS  Google Scholar 

  • Tian F, Xiao Y, Li X, Zhai Q, Wang G, Zhang Q, Zhang H, Chen W (2015) Protective effects of Lactobacillus plantarum CCFM8246 against copper toxicity in mice. PLoS One 10:1–16

    Google Scholar 

  • Tokar EJ, Benbrahim-Tallaa L, Waalkes MP (2011) Metal ions in human cancer development. Met Ions Life Sci 8:375–401

    CAS  PubMed  Google Scholar 

  • Tomatis L, Agthe C, Bartsch H, Huff J, Montesano R (1978) Evaluation of the carcinogenicity of chemicals: a review of the monograph program of the International Agency for Research on Cancer (1971 to 1977). Cancer Res 38:877–885

    CAS  PubMed  Google Scholar 

  • Topcu A, Bulat T (2010) Removal of cadmium and lead from aqueous solution by Enterococcus faecium strains. J Food Sci 75:13–17

    Article  CAS  Google Scholar 

  • Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, Cagnasso P, Bizzarri B, de’ Angelis GL, Shanahan F, van Sinderen D, Ventura M (2009) Exploring the diversity of the Bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 75:1534–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tynecka Z, Gos Z, Zajac J (1981) Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus. J Bacteriol 147:305–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Top Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  • van Baarlen P, Wells J, Kleerebezem M (2013) Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol 34(5):208–215

    Article  PubMed  CAS  Google Scholar 

  • van Kranenburg R, Golic N, Bongers R, Leer RJ, de Vos WM, Siezen RJ, Kleerebezem M (2005) Functional analysis of three plasmids from Lactobacillus plantarum. Appl Environ Microbiol 71:1223–1230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varoni M, Palomba D, Gianorso S (2003) Cadmium as an environmental factor of hypertension in animals: new perspectives on mechanisms. Vet Res Commun 27:807–810

    Article  PubMed  Google Scholar 

  • Veglió F, Beolchini F, Gasbarro A (1997) Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Process Biochem 32:99–105

    Article  Google Scholar 

  • Vilar V, Botelho C, Boaventura R (2006) Equilibrium and kinetic modelling of Cd (II) biosorption by algae Gelidium and agar extraction algal waste. Wat Res 40:291–302

    Article  CAS  Google Scholar 

  • Vilar V, Botelho C, Boaventura R (2008) Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium. Bioresour Technol 99:750–762

    Article  CAS  PubMed  Google Scholar 

  • Vinodhini R, Narayanan M (2008) Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (common carp). Int J Environ Sci Technol 5:179–182

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  PubMed  Google Scholar 

  • Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JBL, Nieuwdorp M (2010) The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53:606–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7:25–35

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  PubMed  Google Scholar 

  • White C, Gadd GM (1998) Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology 144:1407–1415

    Article  CAS  Google Scholar 

  • WHO (1992) Cadmium. In: Environ Health Criteria 224

  • WHO (1995) Inorganic lead. In: Environ Heal Criteria 224

  • WHO (2006) Arsenic and arsenic compounds. Environmental Health Criteria 224, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  • Wu J, Lu J, Chen T, He Z, Su Y, Jin X, Yao X (2010) In situ biotreatment of acidic mine drainage using straw as sole substrate. Environ Earth Sci 60:421–429

    Article  CAS  Google Scholar 

  • Yalçınkaya Y, Soysal L, Denizli A, Arıca M, Bektaş S (2002) Biosorption of cadmium from aquatic systems by carboxymethylcellulose and immobilized Trametes versicolor. Hydrometallurgy 63:31–40

    Article  Google Scholar 

  • Zhai Q, Wang G, Zhao J, Liu X, Tian F, Zhang H, Chen W (2013) Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice. Appl Environ Microbiol 79:1508–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai Q, Wang G, Zhao J, Liu X, Narbad A, Chen YQ, Zhang H, Tian F, Chen W (2014) Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration. Appl Environ Microbiol 80:4063–4071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zodape GV, Dhawan VL, Wagh RR (2012) Determination of metals in cow milk collected from Mumbai City. Eco Revolution Colombo, Srilanka, pp 270–274

    Google Scholar 

  • Zoetendal EG, Vaughan EE, de Vos WM (2006) A microbial world within us. Mol Microbiol 59:1639–1650

    Article  CAS  PubMed  Google Scholar 

  • Zoghi A, Khosravi-Darani K, Sohrabvandi S (2014) Surface binding of toxins and heavy metals by probiotics. Mini Rev Med Chem 14:84–98

    Article  CAS  PubMed  Google Scholar 

  • Zouboulis A, Loukidou M, Matis K (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, ICAR-National Dairy Research Institute, Deemed University, Karnal, for providing infrastructure for PhD research project. The first author also acknowledges University Grant Commission for the financial support in terms of RGNF-SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chand Ram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Kumari, V., Ram, C. et al. Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts. Appl Microbiol Biotechnol 102, 1599–1615 (2018). https://doi.org/10.1007/s00253-018-8743-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8743-9

Keywords

Navigation