Skip to main content

Advertisement

Log in

Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: a mini-review

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Petroleum sludge contains recalcitrant residuals. These compounds because of being toxic to humans and other organism are of the major concerns. Therefore, petroleum sludge should be safely disposed. Physicochemical methods which are used by this sector are mostly expensive and need complex devices. Bioremediation methods because of being eco-friendly and cost-effective overcome most of the limitations of physicochemical treatments. Microbial strains capable to degrade petroleum hydrocarbons are practically present in all soils and sediments and their population density increases in contact with contaminants. Bacterial strains cannot degrade alone all kinds of petroleum hydrocarbons, rather microbial consortium should collaborate with each other for degradation of petroleum hydrocarbon mixtures. Horizontal transfer of functional genes between bacteria plays an important role in increasing the metabolic potential of the microbial community. Therefore, selecting a suitable degrading gene and tracking its horizontal transfer would be a useful approach to evaluate the bioremediation process and to assess the bioremediation potential of contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahn Y, Sanseverino J, Sayler GS (1999) Analyses of polycyclic aromatic hydrocarbon-degrading bacteria isolated from contaminated soils. Biodegradation 10:149–157. doi:10.1023/A:1008369905161

    Article  CAS  PubMed  Google Scholar 

  • Akhmetov LI, Filonov AE, Puntus IF, Kosheleva IA, Nechaeva IA, Yonge DR, Petersen JN, Boronin AM (2008) Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems. Microbiol 77(1):29–39. doi:10.1134/S0026261708010049

    Article  CAS  Google Scholar 

  • Battikhi MN (2014) Bioremediation of petroleum sludge. Submit manuscript. J Microbiol Exp 1(2): 00011. doi: 10.15406/jmen.2014.01.00011

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67. doi:10.1016/S0960-8524(99)00144-3

    Article  CAS  Google Scholar 

  • Boronin AM, Kosheleva IA (2014) The role of catabolic plasmids in biodegradation of petroleum hydrocarbons. In: Current Environmental issues and challenges. Springer, Netherlands, pp 159–168

    Chapter  Google Scholar 

  • Burlage RS, Hooper SW, Sayler GS (1989) The TOL (pWWO) catabolic plasmid. Appl Environ Microb 55(6):1323–1328

    CAS  Google Scholar 

  • Couto MN, Monteiro E, Vasconcelos MT (2010) Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation. Environ Sci Pollut Res Int 17(7):1339–1346. doi:10.1007/s11356-010-0318-y

    Article  CAS  PubMed  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int:1–13. doi:10.4061/2011/941810

  • Dindar E, Olcay F, Şağban T, Başkaya HS (2013) Bioremediation of petroleum-contaminated soil. J Biol Environ Sci 7(19):39–47

    Google Scholar 

  • Fan CY, Krishnamurthy S (1995) Enzymes for enhancing bioremediation of petroleum-contaminated soils: a brief review. J Air Waste Manag Assoc 45(6):453–460. doi:10.1080/10473289.1995.10467375

    Article  CAS  PubMed  Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:1–16. doi:10.3389/fmicb.2014.00173

    Article  Google Scholar 

  • Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104(13):5602–5607. doi:10.1073/pnas.0609650104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrarese E, Andreottola G, Oprea IA (2008) Remediation of PAH-contaminated sediments by chemical oxidation. J Hazard Mater 152(1):128–139. doi:10.1016/j.jhazmat.2007.06.080

    Article  CAS  PubMed  Google Scholar 

  • Foght JM, Westlake DWS (1991) Cross hybridization of plasmid and genomic DNA from aromatic and polycyclic aromatic hydrocarbon degrading bacteria. Can J Microbiol 37:924–932. doi:10.1139/m91-160

    Article  CAS  Google Scholar 

  • Fuenmayor SL, Wild M, Boyes AL, Williams PA (1998) A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol 180(9):2522–2530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes NC, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krögerrecklenfort E, Paranhos R, Mendonça-Hagler LC, Smalla K (2010) Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 74(2):276–290. doi:10.1111/j.1574-6941.2010.00962x

    Article  CAS  PubMed  Google Scholar 

  • Hamann C, Hegemann J, Hildebrandt A (1999) Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol Lett 173:255–263. doi:10.1111/j.1574-6968.1999.tb13510.x

    Article  CAS  PubMed  Google Scholar 

  • Herrick JB, Stuart-Keil KG, Ghiorse WC, Madsen EL (1997) Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl Environ Microbiol 63(6):2330–2337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Li J, Zeng G (2013) Recent development in the treatment of oily sludge from petroleum industry: a review. J Hazard Mater 261:470–490. doi:10.1016/j.jhazmat.2013.07.069

    Article  CAS  PubMed  Google Scholar 

  • Jain PK, Gupta VK, Gaur RK, Lowry M, Jaroli DP, Chauhan UK (2011) Bioremediation of petroleum oil contaminated soil and water. Res J Environ Toxicol 5:1–26. doi:10.3923/rjet.2011.1.26

    Article  CAS  Google Scholar 

  • Jordening HJ, Winter J (2004) Environmental biotechnology: concepts and applications. Wiley-Blackwell. doi:10.1002/3527604286

    Google Scholar 

  • Julsing MK, Schrewe M, Cornelissen S, Hermann I, Schmid A, Bühler B (2012) Outer membrane protein AlkL boosts biocatalytic oxyfunctionalization of hydrophobic substrates in Escherichia coli, (March 2017). Appl Environ Microbiol:5724–5733. doi:10.1128/AEM.00949-12

  • Kok M, Oldenhuis R, Van Der Linden MPG, Meulenberg CHC, Kingma J, Witholt B (1989) The Pseudomonas oleovoruns uZkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase. J Biol Chem 264(10):5442–5451

    CAS  PubMed  Google Scholar 

  • Kunze M, Zerlin KF, Retzlaff A, Pohl JO, Schmidt E, Janssen DB, Vilchez-Vargas R, Pieper DH, Reineke W (2009) Degradation of chloroaromatics by Pseudomonas putida GJ31: assembled route for chlorobenzene degradation encoded by clusters on plasmid pKW1 and the chromosome. Microbiol 4069–4083. doi:10.1099/mic.0.032110-0

  • Laurie AD, Lloyd-Jones G (2000) Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl Environ Microbiol 66(5):1814–1817. doi:10.1128/AEM.66.5.1814-1817.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Geng A, Huang H (2009) The influence of biodegradation on resins and asphaltenes in the Liaohe Basin. Org Geochem 40(3):312–320. doi:10.1016/j.orggeochem.2008.12.006

    Article  CAS  Google Scholar 

  • Liu W, Luo Y, Teng Y, Li Z, Ma LQ (2010) Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Health 32(1):23–29. doi:10.1007/s10653-009-9262-5

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Wang L, Shao Z (2006) Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8(3):455–465. doi:10.1111/j.1462-2920.2005.00911x

    Article  CAS  PubMed  Google Scholar 

  • Maloney LC, Nelson YM, Kitts CL (2004). Characterization of aerobic and anaerobic microbial activity in hydrocarbon-contaminated soil. The Fourth International Conference on Remediation of Chlorinated and Recalcitrant CompoundsMay 2004 Monterey, CA

  • Martins LF, Peixoto RS (2012) Biodegradation of petroleum hydrocarbons in hypersaline environments. Braz J Microbiol 43(3):865–872. doi:10.1590/S1517-83822012000300003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazlova EA, Meshcheryakov SV (1999) Ecological characteristics of oil sludges. Chem Tech Fuels Oil 35(1):49–53. doi:10.1007/BF02694263

    Article  CAS  Google Scholar 

  • Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. J Contam Hydrol 75(3–4):215–255. doi:10.1016/j.jconhyd.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375. doi:10.1016/j.envint.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  • Nie Y, Chi CQ, Fang H, Liang JL, Lu SL, Lai GL, Tang UQ, Wu XL (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 4:4968. doi:10.1038/srep04968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noomen M, Hakkarainen A, van der Meijde M, van der Werff H (2015) Evaluating the feasibility of multitemporal hyperspectral remote sensing for monitoring bioremediation. Int J Appl Earth Obs Geoinf 34(1):217–225. doi:10.1016/j.jag.2014.08.016

    Article  Google Scholar 

  • Parales RE, Emig MD, Lynch NA, Gibson DT (1998) Substrate specificities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenase enzyme systems. J Bacteriol 180(9):2337–2344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powell SM, Harvey PM, Stark JS, Snape I, Riddle MJ (2007) Biodegradation of petroleum products in experimental plots in Antarctic marine sediments is location dependent. Mar Pollut Bull 54(4):434–440. doi:10.1016/j.marpolbul.2006.11.018

    Article  CAS  PubMed  Google Scholar 

  • Pylro VS, Vespoli LDS, Duarte GF, Yotoko KSC (2012) Detection of horizontal gene transfers from phylogenetic comparisons. Int J Evol Biol:1–7. doi:10.1155/2012/813015

  • Rivas FJ (2006) Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation based treatments. J Hazard Mater 138(2):234–251. doi:10.1016/j.jhazmat.2006.07.048

    Article  CAS  PubMed  Google Scholar 

  • Sabean JAR, Scott DB, Lee K, Venosa AD (2009) Monitoring oil spill bioremediation using marsh foraminifera as indicators. Mar Pollut Bull 59:352–361. doi:10.1016/j.marpolbul.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  • Sanseverino J, Applegate BM, King JM, Sayler GS (1993) Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl Environ 59(6):1931–1937

    CAS  Google Scholar 

  • Sayler GS, Layton AC (1990) Environmental application of nucleic acid hybridization. Annul Rev Microbiol 44:625648. doi:10.1146/annurev.mi.44.100190.003205

    Google Scholar 

  • Shahi A, Aydin S, Ince B, Ince O (2016) Reconstruction of bacterial community structure and variation for enhanced petroleum hydrocarbons degradation through biostimulation of oil contaminated soil. Chem Eng J 306:60–66. doi:10.1016/j.cej.2016.07.016

    Article  CAS  Google Scholar 

  • Shahi A, Aydin S, Ince B, Ince O (2015) Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Ecotoxicol Environ Saf 125:153–160. doi:10.1016/j.ecoenv.2015.11.029

    Article  PubMed  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2009) Advances in applied bioremediation. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397. doi:10.1016/j.tim.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  • Smits THM, Balada SB, Witholt B, van Beilen JB (2002) Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J Bacteriol 184(6):1733–1742. doi:10.1128/JB.184.6.1733-1742.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stehmeier LG, Francis MM, Jack TR, Diegor E, Winsor L, Abrajano TA (1999) Field and in vitro evidence for in-situ bioremediation using compound-specific 13C/12C ratio monitoring. Org Geochem 30:821–833. doi:10.1016/S0146-6380(99)00065-0

    Article  CAS  Google Scholar 

  • Tiehm A, Schulze S (2003) Intrinsic aromatic hydrocarbon biodegradation for groundwater remediation. Oil Gas Sci Technol 58(4):449–462. doi:10.2516/ogst:2003028

    Article  CAS  Google Scholar 

  • Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14(3):262–269. doi:10.1016/S0958-1669(03)00066-1

    Article  CAS  PubMed  Google Scholar 

  • Ubani O, Atagana IH, Thantsha SM (2013) Biological degradation of oil sludge: a review of the current state of development. Afr J Biotechnol 12(47):6544–6567. doi:10.5897/AJB11.1139

    Article  Google Scholar 

  • Wickliffe J, Overton E, Frickel S, Howard J, Wilson M, Simon B, Echsner S, Nguyen D, Gauthe D, Blake D, Miller C, Elferink C, Ansari H, Fernando H, Trapido E, Kane A (2014) Evaluation of polycyclic aromatic hydrocarbons using analytical methods, toxicology, and risk assessment research: seafood safety after a petroleum spill as an example. Environ Health Perspect 122(1):6–9. doi:10.1289/ehp.1306724

    Article  PubMed  Google Scholar 

  • Widada J, Nojiri H, Kasuga K, Yoshida T, Habe H, Omori T (2002) Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl Microbiol Biotechnol 58:202–209. doi:10.1007/s00253-001-0880-9

    Article  CAS  PubMed  Google Scholar 

  • Williams KH, Kemna A, Wilkins MJ, Druhan J, Arntzen E, N’Guessan AL, Long PE, Hubbard SS, Banfield JF (2009) Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation. Environ Sci Technol 43(17):6717–6723. doi:10.1021/es900855j

    Article  CAS  PubMed  Google Scholar 

  • Williams KH, Nevin KP, Franks A, Englert A, Long PE, Lovley DR (2010) Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation. Environ Sci Technol 44(1):47–54. doi:10.1021/es9017464

    Article  CAS  PubMed  Google Scholar 

  • Wilson MS, Herrick JB, Jeon CO, Hinman DE, Madsen EL (2003) Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments. Appl Environ Microb 69:2172–2181. doi:10.1128/AEM.69.4.2172-2181.2003

    Article  CAS  Google Scholar 

  • Wong JJW, Lu J, Glover JNM (2012) Micro review relaxosome function and conjugation regulation in F-like plasmids—a structural biology perspective. Mol Microbiol 85(4):602–617. doi:10.1111/j.1365-2958.2012.08131.x

    Article  CAS  PubMed  Google Scholar 

  • Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A (2010) Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater 184(1–3):523–532. doi:10.1016/j.jhazmat.2010.08.067

    Article  CAS  PubMed  Google Scholar 

  • Zylstra GJ, Gibson DT (1991) Aromatic hydrocarbon degradation: a molecular approach. In: Setlow JK (ed) Genetic engineering: principles and methods, vol 13. Plenum Press, New York, pp 183–203

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank the Republic of Turkish Association of Science and Technology (TUBITAK) (project No. 114Y014) and Iran’s National Elites Foundation (INEF) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiyoub Shahi.

Ethics declarations

Conflict of interest

Aiyoub Shahi declares that he has no conflict of interest. Bahar Ince declares that she has no conflict of interest. Sevcan Aydin declares that she has no conflict of interest. Orhan Ince declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahi, A., Ince, B., Aydin, S. et al. Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: a mini-review. Appl Microbiol Biotechnol 101, 4341–4348 (2017). https://doi.org/10.1007/s00253-017-8306-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8306-5

Keywords

Navigation