Skip to main content
Log in

Development and application of a rapid, user-friendly, and inexpensive method to detect Dehalococcoides sp. reductive dehalogenase genes from groundwater

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

TaqMan probe-based quantitative polymerase chain reaction (qPCR) specific to the biomarker reductive dehalogenase (RDase) genes is a widely accepted molecular biological tool (MBT) for determining the abundance of Dehalococcoides sp. in groundwater samples from chlorinated solvent-contaminated sites. However, there are significant costs associated with this MBT. In this study, we describe an approach that requires only low-cost laboratory equipment (a bench top centrifuge and a water bath) and requires less time and resources compared to qPCR. The method involves the concentration of biomass from groundwater, without DNA extraction, and loop-mediated isothermal amplification (LAMP) of the cell templates. The amplification products are detected by a simple visual color change (orange/green). The detection limits of the assay were determined using groundwater from a contaminated site. In addition, the assay was tested with groundwater from three additional contaminated sites. The final approach to detect RDase genes, without DNA extraction or a thermal cycler, was successful to 1.8 × 105 gene copies per L for vcrA and 1.3 × 105 gene copies per L for tceA. Both values are below the threshold recommended for effective in situ dechlorination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad F, Tourlousse DM, Stedtfeld RD, Seyrig G, Herzog AB, Bhaduri P, Hashsham SA (2009) Detection and occurence of indicator organisms and pathogens. Water Environ Res 81(10):959–980

    Article  CAS  Google Scholar 

  • Chen X, Wang X, Jin N, Zhou Y, Huang S, Miao Q, Zhu Q, Xu J (2012) Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification. Internat J Molecul Sci 13(11):14421–14433

    Article  CAS  Google Scholar 

  • Cupples AM (2008) Real-time PCR quantification of Dehalococcoides populations: methods and applications. J Microbiol Methods 72(1):1–11. doi:10.1016/j.mimet.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  • Dijk JA, Breugelmans P, Philips J, Haest PJ, Smolders E, Springael D (2008) Catalyzed reporter deposition-fluorescent in situ hybridization (CARD-FISH) detection of Dehalococcoides. J Microbiol Methods 73(2):142–147. doi:10.1016/j.mimet.2008.01.012

    Article  CAS  PubMed  Google Scholar 

  • Hatt JK, Löffler FE (2012) Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater. J Microbiol Methods 88(2):263–270

    Article  CAS  PubMed  Google Scholar 

  • Herzog AB, Pandey AK, Reyes-Gastelum D, Gerba CP, Rose JB, Hashsham SA (2012) Evaluation of sample recovery efficiency for bacteriophage P22 on fomites. Appl Environ Microbiol 78(22):7915–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DR, Brodie EL, Hubbard AE, Andersen GL, Zinder SH, Alvarez-Cohen L (2008) Temporal transcriptomic microarray analysis of Dehalococcoides ethenogenes strain 195 during the transition into stationary phase. Appl Environ Microbiol 74(9):2864–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanitkar YH, Stedtfeld RD, Steffan RJ, Hashsham SA, Cupples AM (2016) Development of loop mediated isothermal amplification (LAMP) for rapid detection and quantification of Dehalococcoides spp. biomarker genes in commercial reductive dechlorinating cultures KB-1 and SDC-9. Appl Environ Microbiol 82:1799–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurosaki Y, Takada A, Ebihara H, Grolla A, Kamo N, Feldmann H, Kawaoka Y, Yasuda J (2007) Rapid and simple detection of Ebola virus by reverse transcription-loop-mediated isothermal amplification. J Virol Methods 141(1):78–83. doi:10.1016/j.jviromet.2006.11.031

    Article  CAS  PubMed  Google Scholar 

  • Lebron CA, Petrovskis E, Loeffler F, Henn K (2011) Guidance protocol: application of nucleic acid-based tools for monitoring monitored natural attenuation (MNA), biostimulation, and bioaugmentation at chlorinated solvent sites. DTIC Document

  • Lee PK, Macbeth TW, Sorenson KS, Deeb RA, Alvarez-Cohen L (2008) Quantifying genes and transcripts to assess the in situ physiology of Dehalococcoides spp. in a trichloroethene-contaminated groundwater site. Appl Environ Microbiol 74(9):2728–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leys D, Adrian L, Smidt H (2013) Organohalide respiration: microbes breathing chlorinated molecules. Philos T R Soc B 368(1616). doi:10.1098/rstb.2012.0316

  • Löffler FE, Edwards EA (2006) Harnessing microbial activities for environmental cleanup. Curr Opin Biotechnol 17(3):274–284. doi:10.1016/j.copbio.2006.05.001

    Article  PubMed  Google Scholar 

  • Loffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Muller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov and family Dehalococcoidaceae fam. Nov., within the phylum Chloroflexi. Int J Sys Evol Microbiol 63:625–635. doi:10.1099/ijs.0.034926-0

    Article  CAS  Google Scholar 

  • Njiru ZK, Mikosza ASJ, Armstrong T, Enyaru JC, Ndung’u JM, Thompson ARC (2008a) Loop-mediated isothermal amplification (LAMP) method for rapid detection of Trypanosoma brucei rhodesiense. PLoS Negl Trop Dis 2(2):e147. doi:10.1371/journal.pntd.0000147

    Article  PubMed  PubMed Central  Google Scholar 

  • Njiru ZK, Mikosza ASJ, Matovu E, Enyaru JCK, Ouma JO, Kibona SN, Thompson RCA, Ndung’u JM (2008b) African trypanosomiasis: sensitive and rapid detection of the sub-genus Trypanozoon by loop-mediated isothermal amplification (LAMP) of parasite DNA. Internat J Parasitol 38(5):589–599. doi:10.1016/j.ijpara.2007.09.006

    Article  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucl Acids Res 28(12). doi:10.1093/Nar/28.12.E63

  • Ohtsuka K, Yanagawa K, Takatori K, Hara-Kudo Y (2005) Detection of Salmonella enterica in naturally contaminated liquid eggs by loop-mediated isothermal amplification, and characterization of Salmonella isolates. Appl Environ Microbiol 71(11):6730–6735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puls RW, Barcelona MJ (1996) Low-flow (minimal drawdown) ground-water sampling procedures, EPA/540/S-95/504 ground water issue. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • Qiao Y-M, Guo Y-C, Zhang X-E, Zhou Y-F, Zhang Z-P, Wei H-P, Yang R-F, Wang D-B (2007) Loop-mediated isothermal amplification for rapid detection of Bacillus anthracis spores. Biotechnol Lett 29(12):1939–1946

    Article  CAS  PubMed  Google Scholar 

  • Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72(4):2765–2774. doi:10.1128/aem.72.4.2765-2774.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritalahti KM, Hatt JK, Lugmayr V, Henn L, Petrovskis EA, Ogles DM, Davis GA, Yeager CM, Lebron CA, Loffler FE (2010) Comparing on-site to off-site biomass collection for Dehalococcoides biomarker gene quantification to predict in situ chlorinated ethene detoxification potential. Environ Sci Technol 44(13):5127–5133

    Article  CAS  PubMed  Google Scholar 

  • Schaefer CE, Condee CW, Vainberg S, Steffan RJ (2009) Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: comparison between batch and column experiments. Chemosphere 75(2):141–148

    Article  CAS  PubMed  Google Scholar 

  • Schaefer CE, Lippincott DR, Steffan RJ (2010) Field-scale evaluation of bioaugmentation dosage for treating chlorinated ethenes. Ground Water Monitor Remed 30(3):113–124

    Article  CAS  Google Scholar 

  • Stedtfeld RD, Stedtfeld TM, Kronlein M, Seyrig G, Steffan RJ, Cupples AM, Hashsham SA (2014) DNA extraction-free quantification of Dehalococcoides spp. in groundwater using a hand-held device. Environ Sci Technol 48(23):13855–13863. doi:10.1021/es503472h

    Article  CAS  PubMed  Google Scholar 

  • Stedtfeld RD, Stedtfeld TM, Samhan F, Kanitkar YH, Hatzinger PB, Cupples AM, Hashsham SA (2016) Direct loop mediated isothermal amplification on filters for quantification of Dehalobacter in groundwater. J Microbiol Methods 131:61–67

    Article  CAS  PubMed  Google Scholar 

  • Vainberg S, Condee CW, Steffan RJ (2009) Large scale production of Dehalococcoides sp.-containing cultures for bioaugmentation. J Indust Microbiol Biotechnol 36:1189–1197

    Article  CAS  Google Scholar 

  • van der Zaan B, Hannes F, Hoekstra N, Rijnaarts H, de Vos WM, Smidt H, Gerritse J (2010) Correlation of Dehalococcoides 16S rRNA and chloroethene-reductive dehalogenase genes with geochemical conditions in chloroethene-contaminated groundwater. Appl Environ Microbiol 76(3):843–850

    Article  PubMed  Google Scholar 

  • Zhang G, Brown EW, González-Escalona N (2011) Comparison of real-time PCR, reverse transcriptase real-time PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method for the detection of Salmonella spp. in produce. Appl Environ Microbiol 77(18):6495–6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Simon Vainberg, Sheryl Streger, Robert E. Mayer, Michael Martinez, David Lippincott, and Phil Dennis for providing the groundwater and culture samples. We also thank Dr. Frank Löffler (UTK) for providing the tceA plasmid standard. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. Views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of Defense position or decision unless designated by other official documentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison M. Cupples.

Ethics declarations

This research was funded by the United States Department of Defense SERDP grant ER-2309 (Contract W912HQ-13-C-0071). This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanitkar, Y.H., Stedtfeld, R.D., Hatzinger, P.B. et al. Development and application of a rapid, user-friendly, and inexpensive method to detect Dehalococcoides sp. reductive dehalogenase genes from groundwater. Appl Microbiol Biotechnol 101, 4827–4835 (2017). https://doi.org/10.1007/s00253-017-8203-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8203-y

Keywords

Navigation