Skip to main content
Log in

Degrons of yeast and mammalian ornithine decarboxylase enzymes make potent combination for regulated targeted protein degradation

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Elevation of polyamine levels in eukaryotes leads to rapid degradation of ornithine decarboxylase (ODC), the first enzyme of polyamine biosynthesis pathway. ODC in yeast (yODC) has two domains, the Nα/β domain consisting of α/β barrel domain (α/β) preceded by an overhang of 50 residues at its N-terminus (N50) and β sheet domain at its C-terminus. Two degradation determinant signals or degrons in yODC sequence, namely the N50 and the antizyme-binding element (AzBE) housed in the α/β domain, are responsible for its degradation by proteasomes. Antizyme (Az) induced under polyamine excess binds to AzBE and delivers ODC to proteasome, while the N50 threads the protein into proteasome. It was previously reported by us that the peptide Nα/β of yODC acts as an independent transplantable degron, whose action can be modulated with the help of antizyme by varying polyamine levels. Mammalian ODC (mODC), in spite of its 40% sequence homology with yODC, is devoid of N50 of yODC and instead sports a C-terminal tail of 37 residues (CmODC). CmODC acts as an independent transplantable degron with no equivalent in yODC. The present study investigates the merits of employing the two degrons Nα/β and CmODC together for targeted protein degradation by expressing them in a chimeric fusion with green fluorescent protein (GFP). Our results establish that under the regulation of antizyme, the signals Nα/β and CmODC acting together enhance degradation better than either degron in isolation. The combination of Nα/β and CmODC can be employed to study the function of novel proteins through their rapid removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almrud JJ, Oliveira MA, Kern AD, Grishin NV, Phillips MA, Hackert ML (2000) Crystal structure of human ornithine decarboxylase at 2.1 A resolution: structural insights to antizyme binding. J Mol Biol 295:7–16

    Article  CAS  PubMed  Google Scholar 

  • Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its N-terminal residue. Science 234:179–186

    Article  CAS  PubMed  Google Scholar 

  • Bercovich Z, Rosenberg-Hasson Y, Ciechanover A, Kahana C (1989) Degradation of ornithine decarboxylase in reticulocyte lysate is ATP-dependent but ubiquitin-independent. J Biol Chem 264:15949–15952

    CAS  PubMed  Google Scholar 

  • Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999) The proteasome. Annu Rev Biophys Biomol Struct 28:295–317

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay MK, Fernandez C, Sharma D, McPhie P, Masison DC (2011) Yeast ornithine decarboxylase and antizyme form a 1:1 complex in vitro: purification and characterization of the inhibitory complex. Biochem Biophys Res Commun 406:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childs AC, Mehta DJ, Gerner EW (2003) Polyamine-dependent gene expression. Cell Mol Life Sci 60:1394–1406

    Article  CAS  PubMed  Google Scholar 

  • Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:188–194

    Article  CAS  PubMed  Google Scholar 

  • Doshi A, Mishra P, Sharma M, Prabha CR (2014) Functional characterization of dosage-dependent lethal mutation of ubiquitin in Saccharomyces cerevisiae. FEMS Yeast Res 14:1080–1089

    CAS  PubMed  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Fröhlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Eytan E, Ganoth D, Armon T, Hershko A (1989) ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc Natl Acad Sci U S A 86:7751–7755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonzi WA, Sypherd PS (1987) The gene and the primary structure of ornithine decarboxylase from Saccharomyces cerevisiae. J Biol Chem 262:10127–10133

    CAS  PubMed  Google Scholar 

  • Gandre S, Kahana C (2002) Degradation of ornithine decarboxylase in Saccharomyces cerevisiae is ubiquitin independent. Biochem Biophys Res Commun 293:139–144

    Article  CAS  PubMed  Google Scholar 

  • Ghoda L, van Daalen WT, Macrae M, Ascherman D, Coffino P (1989) Prevention of rapid intracellular degradation of ODC by a carboxyl-terminal truncation. Science 243:1495–1497

    Article  Google Scholar 

  • Ghoda L, Phillips MA, Bass KE, Wang CC, Coffino P (1990) Trypanosome ornithine decarboxylase is stable because it lacks sequences found in the C terminus of the mouse enzyme which target the latter for intracellular degradation. J Biol Chem 265:11823–11826

    CAS  PubMed  Google Scholar 

  • Glass JR, Gerner EW (1987) Spermidine mediates degradation of ornithine decarboxylase by a non-lysosomal, ubiquitin-independent mechanism. J Cell Physiol 130:133–141

    Article  CAS  PubMed  Google Scholar 

  • Godderz D, Schafer E, Palanimurugan R, Dohmen RJ (2011) The N-terminal unstructured domain of yeast ODC functions as a transplantable and replaceable ubiquitin-independent degron. J Mol Biol 407:354–367

    Article  PubMed  Google Scholar 

  • Gosink MM, Vierstra RD (1995) Redirecting the specificity of ubiquitination by modifying ubiquitin-conjugating enzymes. Proc Natl Acad Sci U S A 92:9117–9121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guharoy M, Bhowmick P, Sallam M, Tompa P (2016) Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system. Nat Commun 7:10239. doi:10.1038/ncomms10239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61:761–807

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  • Hoyt MA, Zhang M, Coffino P (2003) Ubiquitin independent mechanisms of mouse ornithine decarboxylase degradation are conserved between mammalian and fungal cells. J Biol Chem 278:12135–12143

    Article  CAS  PubMed  Google Scholar 

  • Janne J, Alhonen L, Pietila M, Keinanen TA (2004) Genetic approaches to the cellular functions of polyamines in mammals. Eur J Biochem 271:877–894

    Article  CAS  PubMed  Google Scholar 

  • Janse DM, Crosas B, Finley D, Church GM (2004) Localization to the proteasome is sufficient for degradation. J Biol Chem 279:21415–21420

    Article  CAS  PubMed  Google Scholar 

  • Joshi RG, Kulkarni S, Ratna Prabha C (2015) Engineering degrons of yeast ornithine decarboxylase as vehicles for efficient targeted protein degradation. Biochim Biophys Acta 1850:2452–2463

    Article  CAS  PubMed  Google Scholar 

  • Kern AD, Oliveira MA, Coffino P, Hackert ML (1999) Structure of mammalian ornithine decarboxylase at 1.6 A resolution: stereochemical implications of PLP-dependent amino acid decarboxylases. Structure 7:567–581

    Article  CAS  PubMed  Google Scholar 

  • Lindsten K, Menéndez-Benito V, Masucci MG, Dantuma NP (2003) A transgenic mouse model of the ubiquitin/proteasome system. Nat Biotechnol 21:897–902

    Article  CAS  PubMed  Google Scholar 

  • Loetscher P, Pratt G, Rechsteiner M (1991) The C terminus of mouse ornithine decarboxylase confers rapid degradation on dihydrofolate reductase. Support for the pest hypothesis. J Biol Chem 266:11213–11220

    CAS  PubMed  Google Scholar 

  • Lu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, Hines J, Winkler JD, Crew AP, Coleman K, Crews CM (2015) Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol 22:755–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz AP, Renicke C, Taxis C (2016) Controlling protein activity and degradation using blue light. Methods Mol Biol 1408:67–78

    Article  PubMed  Google Scholar 

  • Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa S, Cuddy M, Fukushima T, Reed JC (2005) Method for targeting protein destruction by using a ubiquitin-independent, proteasome-mediated degradation pathway. Proc Natl Acad Sci U S A 102:14982–14987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra P, Volety S, Rao CM, Prabha CR (2009) Glutamate64 to glycine substitution in G1 beta-bulge of ubiquitin impairs function and stabilizes structure of the protein. J Biochem 146:563–569

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Prabha CR, Rao CM, Volety S (2011) Q2N and S65D substitutions of ubiquitin unravel functional significance of the invariant residues Gln2 and Ser65. Cell Biochem Biophys 61:619–628

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki Y, Matsufuji S, Murakami Y, Hayashi S (1993) Single amino-acid replacement is responsible for the stabilization of ornithine decarboxylase in HMOA cells. Eur J Biochem 214:837–844

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360:597–599

    Article  CAS  PubMed  Google Scholar 

  • Pohjanpelto P, Holtta E, Janne OA (1985) Mutant strain of Chinese hamster ovary cells with no detectable ornithine decarboxylase activity. Mol Cell Biol 5:1385–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porat Z, Landau G, Bercovich Z, Krutauz D, Glickman M, Kahana C (2008) Yeast antizyme mediates degradation of yeast ornithine decarboxylase by yeast but not by mammalian proteasome: new insights on yeast antizyme. J Biol Chem 283:4528–4534

    Article  CAS  PubMed  Google Scholar 

  • Prabha CR, Mishra P, Shahukar M (2010) Isolation of a dosage dependent lethal mutation in ubiquitin gene of Saccharomyces cerevisiae. Macromol Symp 287:89–94

    Article  CAS  Google Scholar 

  • Prabha CR, Mukherjee S, Raman R, Kulkarni S (2012) The ends and means of artificially induced targeted protein degradation. Appl Microbiol Biotechnol 96:1111–1123

    Article  CAS  PubMed  Google Scholar 

  • Raina K, Crews CM (2010) Chemical inducers of targeted protein degradation. J Biol Chem 285:11057–11060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renicke C, Schuster D, Usherenko S, Essen L-O, Taxis C (2013) A LOV2 domain based optogenic tool to control protein degradation and cellular function. Chem Biol 20:619–626

    Article  CAS  PubMed  Google Scholar 

  • Renicke C, Taxis C (2016) Biophotography: concepts, applications and perspectives. Appl Microbiol Biotechnol 100:3415–3420

    Article  CAS  PubMed  Google Scholar 

  • Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg-Hasson Y, Bercovich Z, Ciechanover A, Kahana C (1989) Degradation of ornithine decarboxylase in mammalian cells is ATP dependent but ubiquitin independent. Eur J Biochem 185:469–474

    Article  CAS  PubMed  Google Scholar 

  • Russell DH, Snyder SH (1969) Amine synthesis in regenerating rat liver: extremely rapid turnover of ornithine decarboxylase. Mol Pharmacol 5:253–262

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2 edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schneekloth JS Jr, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, Crews CM (2004) Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc 126:3748–37454

    Article  CAS  PubMed  Google Scholar 

  • Schneekloth AR, Pucheault M, Tae HS, Crews CM (2008) Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett 18:5904–5908

    Article  CAS  PubMed  Google Scholar 

  • Seely JE, Persson L, Sertich GJ, Pegg AE (1985) Comparison of ornithine decarboxylase from rat liver, rat hepatoma and mouse kidney. Biochem J 226:577–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Prabha CR (2011) Construction and functional characterizations of double and triple mutants of parallel β-bulge of ubiquitin. Indian J Exp Biol 49:919–924

    CAS  PubMed  Google Scholar 

  • Sharma M, Prabha CR (2015) Q2N and E64G double mutation of ubiquitin confers a stress sensitive phenotype on Saccharomyces cerevisiae. Indian J Exp Biol 53:617–620

    PubMed  Google Scholar 

  • Stack JH, Whitney M, Rodems SM, Pollok BA (2000) A ubiquitin-based tagging system for controlled modulation of protein stability. Nat Biotechnol 18:1298–1302

    Article  CAS  PubMed  Google Scholar 

  • Stankunas K, Crabtree GR (2007) Exploiting protein destruction for constructive use. Proc Natl Acad Sci U S A 104:11511–11512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steglich C, Scheffler IE (1982) An ornithine decarboxylase-deficient mutant of Chinese hamster ovary cells. J Biol Chem 257:4603–4609

    CAS  PubMed  Google Scholar 

  • Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tachihara K, Uemura T, Kashiwagi K, Igarashi K (2005) Excretion of putrescine and spermidine by the protein encoded by YKL174c (TPO5) in Saccharomyces cerevisiae. J Biol Chem 280:12637–12642

    Article  CAS  PubMed  Google Scholar 

  • Teixeira MC, Cabrito TR, Hanif ZM, Vargas RC, Tenreiro S, Sa-Correia I (2011) Yeast response and tolerance to polyamine toxicity involving the drug: H+ antiporter Qdr3 and the transcription factors Yap1 and Gcn4. Microbiology 157:945–956

    Article  CAS  PubMed  Google Scholar 

  • Varshavsky A (1996) The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A 93:12142–12149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Pickart CM, Coffino P (2003) Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J 22:1488–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP (2002) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–709

    Article  CAS  PubMed  Google Scholar 

  • Zhou P (2005) Targeted protein degradation. Curr Opin Chem Biol 9:51–55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a major research project grant (No. BT/PR939/BRB/10/553/2007) awarded to C. Ratna Prabha from the Department of Biotechnology, Ministry of Science and Technology, Government of India. We thank P. Coffino, University of California, for providing us with genes for yeast and mammalian ornithine decarboxylase enzymes; Herbert Tabor, National Institutes of Health for Y05034 and Y651 strains of Saccharomyces cerevisiae; and Jeffrey Gerst, the Weizmann Institute of Science, Israel, for the plasmids pUG35 and pUG46. We thank the DBT-ILSPARE programme of the M. S. University of Baroda, India, for extending us the flow cytometry facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ratna Prabha.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by a major research project grant (No. BT/PR939/BRB/10/553/2007) awarded to C. Ratna Prabha from the Department of Biotechnology, Ministry of Science and Technology, Government of India.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R.G., Ratna Prabha, C. Degrons of yeast and mammalian ornithine decarboxylase enzymes make potent combination for regulated targeted protein degradation. Appl Microbiol Biotechnol 101, 2905–2917 (2017). https://doi.org/10.1007/s00253-016-8023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-8023-5

Keywords

Navigation