Skip to main content
Log in

Overexpression of yeast thioredoxin TRX2 reduces p53-mediated cell death in yeast

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We have previously shown that overexpression of the human tumor suppressor protein P53 causes cell death of the yeast Saccharomyces cerevisiae. P53 overproduction led to transcriptional downregulation of some yeast genes, such as the TRX1/2 thioredoxin system, which plays a key role in cell protection against various oxidative stresses induced by reactive oxygen species (ROS). In the present work, the impact of TRX2 overexpression on apoptosis mediated by p53 overexpression in yeast is investigated. In yeast cells expressing P53 under an inducible promoter together with TRX2 under a strong constitutive promoter, we showed that Tr2p overproduction reduced the apoptotic effect exerted by P53 and increased the viability of the P53-overproducing cells. Furthermore, measurements of ROS amounts by flow cytometry and fluorescence microscopy indicated that the TRX2 protein acted probably through its increased detoxifying activity on the P53-generated ROS. The steady-state level and activity of P53 were not affected by TRX2 overexpression, as shown by western blotting and functional analysis of separated alleles in yeast (FASAY), respectively. The growth inhibitory effect of P53 was partially reversed by the antioxidant N-acetylcysteine. Our data strengthen the idea that overexpression of a single gene (trx2) decreases the p53-mediated cell death by decreasing ROS accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelmoula-Souissi S, Delahodde A, Bolotin-Fukuhara M, Gargouri A, Mokdad-Gargouri R (2011) Cellular localization of human p53 expressed in the yeast Saccharomyces cerevisiae: effect of NLSI deletion. Apoptosis 16:746–756

    Article  CAS  PubMed  Google Scholar 

  • Black S, Harte EM, Hudson B, Wartofsky L (1960) A specific enzymatic reduction of l (−) methionine sulfoxide and a related nonspecific reduction of disulfides. J Biol Chem 235:2910–2916

    CAS  Google Scholar 

  • Boggs SE, McCormick TS, Lapetina EG (1998) Glutathione levels determine apoptosis in macrophages. Biochem Biophys Res Commun 247:229–233

    Article  CAS  PubMed  Google Scholar 

  • Bonneaud N, Ozier-Kalogeropoulos O, Li GY, Labouesse M, Minvielle-Sebastia L, Lacroute F (1991) A family of low and high copy replicative, integrative and single stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7:609–615

    Article  CAS  PubMed  Google Scholar 

  • Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams AJ, Wheeler R, Wong B, Drenkow J, Yamanaka M, Patel S, Brubaker S, Tammana H, Helt G, Struhl K, Gingeras TR (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of non-coding RNAs. Cell 116:499–509

    Article  CAS  PubMed  Google Scholar 

  • Cullin C, Pompon D (1988) Synthesis of functional mouse cytochromes P-450 P1 and chimeric P-450 P3–1 in the yeast Saccharomyces cerevisiae. Gene 65:203–217

    Article  CAS  PubMed  Google Scholar 

  • Delahodde A, Pandjaitan R, Corral-Debrinski M, Jacq C (2001) Pse1/Kap121-dependent nuclear localization of the major yeast multidrug resistance (MDR) transcription factor Pdr1. Mol Microbiol 39:304–312

    Article  CAS  PubMed  Google Scholar 

  • Demidenko ZN, Korotchkina LG, Gudkov AV, Blagosklonny MV (2010) Paradoxical suppression of cellular senescence by p53. Proc Natl Acad Sci U S A 107:9660–9664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dhar SK, Xu Y, Daret KS (2006) Specificity protein 1-dependent p53-mediated suppression of human manganese superoxide dismutase gene expression. J Biol Chem 281:21698–21709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flaman JM, Frebourg T, Moreau V (1995) A simple P53 functional assay for screening cell lines, blood and tumors. Proc Natl Acad Sci U S A 92:3963–3967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gan ZR (1991) Yeast thioredoxin genes. J Biol Chem 266:1692–1696

    CAS  PubMed  Google Scholar 

  • Garrido EO, Grant CM (2002) Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Mol Microbiol 43:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Hearnes JM, Mays DJ, Schavolt KL, Tang L, Jiang X, Pietenpol JA (2005) Chromatin immunoprecipitation-based screen to identify functional genomic binding sites for sequence-specific transactivators. Mol Cell Biol 25:10148–10158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    CAS  PubMed  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leão M, Gomes S, Bessa C, Soares J, Raimundo L, Harilal N, Monti P, Fronza G, Pereira C, Saraiva L (2015) Studying p53 family proteins in yeast: induction of autophagic cell death and modulation by interactors and small molecules. Exp Cell Res 330:164–177

    Article  PubMed  Google Scholar 

  • Liu B, Chen Y, Clair DKS (2008) ROS and p53: versatile partnership. Free Radic Biol Med 44:1529–1535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maillet A, Pervaiz S (2012) Redox regulation of p53, redox effectors regulated by p53: a subtle balance. Antioxid Redox Sign 16:1285–1294

    Article  CAS  Google Scholar 

  • Marutani M, Tonoki H, Tada M, Takahashi M, Kashiwazaki H, Hida Y, Hamada J, Asaka M, Moriuchi T (1999) Dominant-negative mutations of the tumor suppressor p53 relating to early onset of glioblastoma multiforme. Cancer Res 59:4765–4769

    CAS  PubMed  Google Scholar 

  • Masutani H, Ueda S, Yodoi J (2005) The thioredoxin system in retroviral infection and apoptosis. Cell Death Differ 12:991–998

    Article  CAS  PubMed  Google Scholar 

  • Mokdad-Gargouri R, Belhadj K, Gargouri A (2001) Translational control of human p53 expression in yeast mediated by 5′-UTR ORF structural interaction. Nucleic Acids Res 29:1222–1227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17:631–636

    Article  CAS  PubMed  Google Scholar 

  • Muller E (1990) Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J Biol Chem 266:9194–9202

    Google Scholar 

  • Nishinaka Y, Nakamura H, Masutani H, Yodi J (2001) Redox control of cellular function by thioredoxin: a new therapeutic direction in host defense. Arch Immunol Ther Exp 49:285–292

    CAS  Google Scholar 

  • Olovnikov IA, Kravchenko JE, Chumakov PM (2009) Homeostatic functions of the p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. Semin Cancer Biol 19:32–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10:431–442

    Article  CAS  PubMed  Google Scholar 

  • Palermo V, Mangiapelo E, Piloto C, Pieri L, Muscolini M, Tuosto L, Mazzoni C (2013) p53 death signal is mainly mediated by Nuc1(EndoG) in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 13:682–688

    Article  CAS  PubMed  Google Scholar 

  • Peleg S, Schrader WT, O’Malley BW (1989) Differential sensitivity of chicken progesterone receptor forms to sulfhydryl reactive reagents. Biochemistry-US 28:7373–7379

    Article  CAS  Google Scholar 

  • Powis G, Montfort WR (2001) Properties and biological activities of thioredoxins. Annu Rev Pharmacol 41:261–295

    Article  CAS  Google Scholar 

  • Priault M, Chaudhuri B, Clow A, Camougrand N, Manon S (1999) Investigation of bax-induced release of cytochrome c from yeast mitochondria, permeability of mitochondrial membranes, role of VDAC and ATP requirement. Eur J Biochem 260:684–691

    Article  CAS  PubMed  Google Scholar 

  • Rainwater R, Parks D, Anderson ME, Tegtmeyer P, Mann K (1995) Role of cysteine residues in regulation of p53 function. Mol Cell Biol 15:3892–3903

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reliene R, Pollard JM, Sobol Z, Trouiller B, Gatti RA, Schiestl RH (2009) N-acetyl cysteine protects against ionizing radiation-induced DNA damage but not against cell killing in yeast and mammals. Mutat Res 665:37–43

    Article  CAS  PubMed  Google Scholar 

  • Schuler M, Green DR (2005) Transcription, apoptosis and p53: catch-22. Trends Genet 21:182–187

    Article  CAS  PubMed  Google Scholar 

  • Smeenk L, van Heeringen SJ, Koeppel M, van Driel M, Bartels SJ, Akkers RC, Denissov S, Stunnenberg HG, Lohrum M (2008) Characterization of genome-wide p53-binding sites upon stress response. Nucleic Acids Res 36:3639–3654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan S, Sagara Y, Liu Y, Maher P, Schubert D (1998) The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141:1423–1432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka T, Hijioka H, Fujita KI, Usuki Y, Taniguchi M, Hirasawa E (2004) Oxidative stress-dependent inhibition of yeast cell growth by farnesylamine and its possible relation to amine oxidase in the mitochondrial fraction. J Biosci Bioeng 98:470–476

    Article  CAS  PubMed  Google Scholar 

  • Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630

    Article  CAS  PubMed  Google Scholar 

  • Tokino T, Nakamura Y (2000) The role of p53-target genes in human cancer. Crit Rev Oncol Hemat 33:1–6

    Article  CAS  Google Scholar 

  • Toledano MB, Delaunay A, Biteau D, Spector D, Azevedo D (2003) Oxidative stress responses in yeasts. In: Hohmann S, Mager WH (eds) Yeast stress responses, 1st edn. Springer, Heidelberg, pp. 241–303

    Chapter  Google Scholar 

  • Vigneron A, Vousden KH (2010) p53, ROS and senescence in the control of aging. Aging 2:471–474

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong HC, Fu Y, Weng Z, Liu J, Zhao XD, Chew JL, Lee YL, Kuznetsov VA, Sung WK, Miller LD, Lim B, Liu ET, Yu Q, Ng HH, Ruan Y (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219

    Article  CAS  PubMed  Google Scholar 

  • Wilson LG, Asahi T, Bandurski RS (1961) Reduction of sulfate to sulfite. J Biol Chem 236:1822–1829

    CAS  PubMed  Google Scholar 

  • Yacoubi-Hadj Amor I, Smaoui K, Chaabene I, Mabrouk I, Djemal L, Elleuch H, Allouche M, Mokdad-Gargouri R, Gargouri A (2008) Human p53 induces cell death and down regulates thioredoxin expression in Saccharomyces cerevisiae. FEMS Yeast Res 8:1–9

    Article  Google Scholar 

  • Yelin R, Rotem D, Schuldiner S (2009) EmrE, a small Escherichia coli multidrug transporter, protects Saccharomyces cerevisiae from toxins by sequestration in the vacuole. J Bacteriol 181:949–956

    Google Scholar 

Download references

Acknowledgments

This work is dedicated to Pr Daniel Thomas, UTC Compiègne, France, and to our colleague Dr. Noomen Hadj Taieb. We deeply thank Pr Richard Iggo for the gift of strain yIG397 and for his encouragement. Pr Gerard Rosset, Pr Denis Pompon, and Pr François Lacroute are thanked for the gift of BFG1, pDP, and pFL39 vectors. Mrs. Rim Besbes is thanked for her help in fluorescent microscopy. Dr. Wajdi Ayadi is thanked for the antibody anti-tubulin. This work is a part of the contract program concluded with the «Ministère de l’Enseignement Supérieur et de la Recherche Scientifique» of Tunisia.

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by the Ministry of Higher Education and Scientific Research, Tunisian Government.

Conflict of interest

All authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Gargouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamoun, Y., Mabrouk, I., Delahodde, A. et al. Overexpression of yeast thioredoxin TRX2 reduces p53-mediated cell death in yeast. Appl Microbiol Biotechnol 99, 8619–8628 (2015). https://doi.org/10.1007/s00253-015-6886-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6886-5

Keywords

Navigation