Skip to main content
Log in

Improvement in the UV resistance of baculoviruses by displaying nano-zinc oxide-binding peptides on the surfaces of their occlusion bodies

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The sensitivity of baculoviruses to UV radiation severely limits their large-scale application as biological insecticides. The polyhedron envelope of a baculovirus, which is composed of carbohydrate and polyhedron envelope protein (PEP), is a significant structure for the stability and persistence of occlusion bodies (OBs) under environmental conditions. The results of this study revealed that the rough pitted surface phenotype of a pep-null Autographa californica multiple nucleopolyhedrovirus (AcMNPV) could not be rescued by any of its homologues, such as Helicoverpa armigera nucleopolyhedrovirus pep or Cydia pomonella granulovirus putative peps. In contrast, the N-terminal and middle flexible region (NM region, 1–167 aa) of AcMNPV PEP were able to form an intact OB envelope. Furthermore, this region was capable of carrying eGFP to the surfaces of the OBs. To improve the UV resistance of AcMNPV OBs, two peptides capable of specifically binding to nano-ZnO were separately fused to the NM region of PEP. Under laboratory conditions, infectivity of the recombinant viruses binding to nano-ZnO particles was about ninefold higher than that without the nano-ZnO particles after UV-B irradiation. Pot experiments revealed that the half-life of the recombinant baculovirus binding nano-ZnO particles was 3.3 ± 0.15 days, which was significantly longer than that of the control virus (0.49 ± 0.06 days). These results therefore represent a new approach for the protection the baculoviral insecticides against UV irradiation in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arthurs SP, Lacey LA, Behle RW (2006) Evaluation of spray-dried lignin-based formulations and adjuvants as solar protectants for the granulovirus of the codling moth, Cydia pomonella (L). J Invertebr Pathol 93(2):88–95. doi:10.1016/j.jip.2006.04.008

    Article  CAS  PubMed  Google Scholar 

  • Asano S (2005) Ultraviolet protection of a granulovirus product using iron oxide. Appl Entomol Zool 40(2):359–364. doi:10.1303/aez.2005.359

    Article  CAS  Google Scholar 

  • Beas-Catena A, Sanchez-Miron A, Garcia-Camacho F, Contreras-Gomez A, Molina-Grima E (2014) Baculovirus biopesticides: an overview. J Anim Plant Sci 24(2):362–373

    Google Scholar 

  • Burges HD, Jones K (1998) Formulation of bacteria, viruses and protozoa to control insects. In: Burges HD (ed) Formulation of microbial biopesticides. Springer, Netherlands, pp 33–127

    Chapter  Google Scholar 

  • Carpentier DCJ, Griffiths CM, King LA (2008) The baculovirus P10 protein of Autographa californica nucleopolyhedrovirus forms two distinct cytoskeletal-like structures and associates with polyhedral occlusion bodies during infection. Virology 371:278–291. doi:10.1016/j.virol.2007.09.043

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Escasa SR, Lauzon HAM, Mathur AC, Krell PJ, Arif BM (2006) Sequence analysis of the Choristoneura occidentalis granulovirus genome. J Gen Virol 87:1917–1933. doi:10.1099/vir.0.81792-0

    Article  CAS  PubMed  Google Scholar 

  • Farrar RR, Shapiro M, Javaid I (2003) Photostabilized titanium dioxide and a fluorescent brightener as adjuvants for a nucleopolyhedrovirus. Biocontrol 48(5):543–560

    Article  CAS  Google Scholar 

  • Finney DJ (1978) Statistical method in biological assay. Griffin, London, p 508

    Google Scholar 

  • Gombart AF, Pearson MN, Rohrmann GF, Beaudreau GS (1989) A baculovirus polyhedral envelope-associated protein: genetic location, nucleotide sequence, and immunocytochemical characterization. Virology 169(1):182–193. doi:10.1016/0042-6822(89)90054-8

    Article  CAS  PubMed  Google Scholar 

  • Gross CH, Russell RL, Rohrmann GF (1994) Orgyia pseudotsugata baculovirus p10 and polyhedron envelope protein genes: analysis of their relative expression levels and role in polyhedron structure. J Gen Virol 75(5):1115–1123. doi:10.1099/0022-1317-75-5-1115

    Article  CAS  PubMed  Google Scholar 

  • Hoover K, Kishida KT, DiGiorgio LA, Workman J, Alaniz SA, Hammock BD, Duffey SS (1998) Inhibition of baculoviral disease by plant-mediated peroxidase activity and free radical generation. J Chem Ecol 24(12):1949–2001. doi:10.1023/a:1020777407980

    Article  CAS  Google Scholar 

  • Hughes PR, Wood HA (1981) A synchronous peroral technique for the bioassay of insect viruses. J Invertebr Pathol 37(2):154–159. doi:10.1016/0022-2011(81)90069-0

    Article  Google Scholar 

  • Ignoffo CM, Hostetter DL, Sikorowski PP, Sutter G, Brooks WM (1977) Inactivation of representative species of entomopathogenic viruses, a bacterium, fungus, and protozoan by an ultraviolet light source. Environ Entomol 6(3):411–415

    Article  Google Scholar 

  • Ignoffo CM, Garcia C, Saathoff SG (1997) Sunlight stability and rain-fastness of formulations of Baculovirus heliothis. Environ Entomol 26(6):1470–1474

    Article  Google Scholar 

  • Inceoglu AB, Kamita SG, Hammock BD (2006) Genetically modified baculoviruses: a historical overview and future outlook. Adv Virus Res 68:323–360. doi:10.1016/s0065-3527(06)68009-3

    Article  CAS  PubMed  Google Scholar 

  • Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF, Theilmann DA, Thiem SM, Vlak JM (2006) On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151(7):1257–1266. doi:10.1007/s00705-006-0763-6

    Article  CAS  PubMed  Google Scholar 

  • Jeyarani S, Sathiah N, Karuppuchamy P (2013) An in vitro method for increasing UV-tolerance in a strain of Helicoverpa armigera (Lepidoptera: Noctuidae) nucleopolyhedrovirus. Biocontrol Sci Tech 23(3):305–316. doi:10.1080/09583157.2012.757296

    Article  Google Scholar 

  • Killick HJ (1990) Influence of droplet size, solar ultraviolet light and protectants, and other factors on the efficacy of baculovirus sprays against Panolis flammea (Schiff.) (Lepidoptera: Noctuidae). Crop Prot 9(1):21–28. doi:10.1016/0261-2194(90)90041-5

    Article  Google Scholar 

  • Kjaergaard K, Sørensen JK, Schembri MA, Klemm P (2000) Sequestration of zinc oxide by fimbrial designer chelators. Appl Environ Microbiol 66(1):10–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lasa R, Ruiz-Portero C, Alcazar MD, Belda JE, Caballero P, Williams T (2007) Efficacy of optical brightener formulations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) as a biological insecticide in greenhouses in southern Spain. Biol Control 40(1):89–96. doi:10.1016/j.biocontrol.2006.06.015

    Article  CAS  Google Scholar 

  • Luckow VA, Lee SC, Barry GF, Olins PO (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67(8):4566–4579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luque T, Finch R, Crook N, O’Reilly DR, Winstanley D (2001) The complete sequence of the Cydia pomonella granulovirus genome. J Gen Virol 82:2531–2547

    CAS  PubMed  Google Scholar 

  • Morales L, Moscardi F, Sosa-Gomez DR, Paro FE, Soldorio IL (2001) Fluorescent brighteners improve Anticarsia gemmatalis (Lepidoptera: Noctuidae) nucleopolyhedrovirus (AgMNPV) activity on AgMNPV susceptible and resistant strains of the insect. Biol Control 20(3):247–253. doi:10.1006/bcon.2000.0904

    Article  CAS  Google Scholar 

  • Morris ON (1971) The effect of sunlight, ultraviolet and gamma radiations, and temperature on the infectivity of a nuclear polyhedrosis virus. J Invertebr Pathol 18(2):292–294. doi:10.1016/0022-2011(71)90161-3

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Robertson JL, Russell RM, Preisler HK (2007) Bioassays with arthropods. CRC, Boca Raton

    Google Scholar 

  • Russell RLQ, Rohrmann GF (1990) A baculovirus polyhedron envelope protein: immunogold localization in infected cells and mature polyhedra. Virology 174(1):177–184. doi:10.1016/0042-6822(90)90066-z

    Article  CAS  PubMed  Google Scholar 

  • Slack J, Arif BM (2007) The baculoviruses occlusion-derived virus: virion structure and function. Adv Virus Res 69:99–105. doi:10.1016/s0065-3527(06)69003-9

    Article  CAS  PubMed  Google Scholar 

  • Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State University Press, Ames, p 503

    Google Scholar 

  • Sparks WO, Bonning BC, Harrison RL (2011) Autographa californica multiple nucleopolyhedrovirus ODV-E56 is a per os infectivity factor, but is not essential for binding and fusion of occlusion-derived virus to the host midgut. Virology 409(1):69–76. doi:10.1016/j.virol.2010.09.027

    Article  CAS  PubMed  Google Scholar 

  • Sun XL (2015) History and current status of development and use of viral insecticides in China. Viruses-Basel 7:306–309. doi:10.3390/v7010306

    Article  Google Scholar 

  • Sun XL, Sun XC, van der Werf W, Vlak JM, Hu ZH (2004) Field inactivation of wild-type and genetically modified Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus in cotton. Biocontrol Sci Tech 14(2):185–192. doi:10.1080/09583150310001655684

    Article  Google Scholar 

  • Tsai JM, Wang HC, Leu JH, Wang AH, Zhuang Y, Walker PJ, Kou GH, Lo CF (2006) Identification of the nucleocapsid, tegument, and envelope proteins of the shrimp white spot syndrome virus virion. J Virol 80(6):3021–3029. doi:10.1128/jvi.80.6.3021-3029.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tuan SJ, Tang LC, Hou RF (1989) Factors affecting pathogenicity of NPV preparations to the corn earworm, Heliothis armigera. Entomophaga 34(4):541–549. doi:10.1007/bf02374392

    Article  Google Scholar 

  • Vreuls C, Zocchi G, Genin A, Archambeau C, Martial J, Van de Weerdt C (2010) Inorganic-binding peptides as tools for surface quality control. J Inorg Biochem 104(10):1013–1021. doi:10.1016/j.jinorgbio.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  • Wu ZW, Fan JB, Yu H, Wang D, Zhang YL (2015) Ultraviolet protection of the Cydia pomonella granulovirus using zinc oxide and titanium dioxide. Biocontrol Sci Tech 25:97–107. doi:10.1080/09583157.2014.951029

    Article  Google Scholar 

  • Young SY, Yearian WC, Kim KS (1977) Effect of dew from cotton and soybean foliage on activity of Heliothis nuclear polyhedrosis virus. J Invertebr Pathol 29(1):105–111. doi:10.1016/0022-2011(77)90180-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a key project grant from the 863 project (2011AA10A204) of the Ministry of Science and Technology of China, the Knowledge Innovation Program (KSZD-EW-Z-021) of the Chinese Academy of Sciences and WIV “One-Three-Five” Strategic Programs.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiulian Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhou, Y., Lei, C. et al. Improvement in the UV resistance of baculoviruses by displaying nano-zinc oxide-binding peptides on the surfaces of their occlusion bodies. Appl Microbiol Biotechnol 99, 6841–6853 (2015). https://doi.org/10.1007/s00253-015-6581-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6581-6

Keywords

Navigation