Skip to main content

Advertisement

Log in

Mercaptosuccinate metabolism in Variovorax paradoxus strain B4—a proteomic approach

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Variovorax paradoxus B4 was isolated due to its ability to degrade the organic thiol compound mercaptosuccinate, which could be a promising precursor for novel polythioesters. The analysis of the proteome of this Gram-negative bacterium revealed several proteins with significantly increased expression during growth of cells with mercaptosuccinate as carbon source when compared to cells grown with gluconate or succinate. Among those, a large number of proteins involved in amino acid metabolism were identified, e.g., adenosylhomocysteinase and glutamate-ammonia ligase. Additionally, detection of superoxide dismutase strengthened the assumption of enhanced stress levels in mercaptosuccinate-grown cells. Several isoforms of a rhodanese domain-containing protein exhibited particularly increased expression during growth with mercaptosuccinate in comparison to gluconate (factor 14.2, stationary phase) or to succinate (factor 15.4, stationary phase). Besides this, augmented expression of the hypothetical protein VAPA_1c41240 raised attention. VAPA_1c41240 exhibited up to 13.3-fold (mercaptosuccinate vs gluconate) or 9.5-fold (mercaptosuccinate vs succinate) increased expression levels, and in silico searches revealed that this protein might be a thiol dioxygenase. Based on these results, a novel degradation pathway is proposed for mercaptosuccinate. The newly identified putative mercaptosuccinate dioxygenase could convert mercaptosuccinate to sulfinosuccinate by the introduction of two molecules of oxygen. Subsequently, sulfinosuccinate would be cleaved into succinate and sulfite either by a yet unknown enzyme, by spontaneous hydrolysis, or by the putative mercaptosuccinate dioxygenase itself. Succinate could then enter the central metabolism, while detoxification of sulfite could be achieved by the previously identified putative molybdopterin oxidoreductase. Biochemical studies will be done in the future to confirm this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartels A, Mock HP, Papenbrock J (2007) Differential expression of Arabidopsis sulfurtransferases under various growth conditions. Plant Physiol Biochem 45:178–187. doi:10.1016/j.plaphy.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  • Beebe KD, Shin J, Peng J, Chaudhury C, Khera J, Pei D (2000) Substrate recognition through a PDZ domain in tail-specific protease. Biochemistry 39:3149–3155. doi:10.1021/bi992709s

    Article  CAS  PubMed  Google Scholar 

  • Belfaiza J, Parsot C, Martel A, de la Tour CB, Margarita D, Cohen GN, Saint-Girons I (1986) Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc Natl Acad Sci U S A 83:867–871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ben-Bassat A, Bauer K, Chang SY, Myambo K, Boosman A, Chang S (1987) Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol 169:751–757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bordo D, Bork P (2002) The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. EMBO Rep 3:741–746. doi:10.1093/embo-reports/kvf150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brandt U, Hiessl S, Schuldes J, Thürmer A, Wübbeler JH, Daniel R, Steinbüchel A (2013) Genome-guided insights into the versatile metabolic capabilities of the mercaptosuccinate-utilizing β-proteobacterium Variovorax paradoxus strain B4. Environ Microbiol. doi:10.1111/1462-2920.12340

    PubMed  Google Scholar 

  • Carbajal-Rodríguez I, Stöveken N, Satola B, Wübbeler JH, Steinbüchel A (2011) Aerobic degradation of mercaptosuccinate by the Gram-negative bacterium Variovorax paradoxus strain B4. J Bacteriol 193:527–539. doi:10.1128/JB.00793-10

    Article  PubMed Central  PubMed  Google Scholar 

  • Cereda A, Carpen A, Picariello G, Tedeschi G, Pagani S (2009) The lack of rhodanese RhdA affects the sensitivity of Azotobacter vinelandii to oxidative events. Biochem J 418:135–143. doi:10.1042/BJ20081218

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Xie QW, Nathan C (1998) Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol Cell 1:795–805. doi:10.1016/S1097-2765(00)80079-9

    Article  CAS  PubMed  Google Scholar 

  • Davis DH, Doudoroff M, Stanier RY, Mandel M (1969) Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 19:375–390

    Article  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Felce J, Saier MH Jr (2004) Carbonic anhydrases fused to anion transporters of the SulP family: evidence for a novel type of bicarbonate transporter. J Mol Microbiol Biotechnol 8:169–176. doi:10.1159/000085789

    Article  CAS  PubMed  Google Scholar 

  • Ghaderi S, Ramesh B, Seifalian AM (2012) Synthesis of mercaptosuccinic acid/MercaptoPolyhedral oligomeric silsesquioxane coated cadmium telluride quantum dots in cell labeling applications. J Nanosci Nanotechnol 12:4928–4935. doi:10.1166/jnn.2012.4907

    Article  CAS  PubMed  Google Scholar 

  • Hall MR, Berk RS (1972) Thiosulfate oxidase from an Alcaligenes grown on mercaptosuccinate. Can J Microbiol 18:235–245

    Article  CAS  PubMed  Google Scholar 

  • Hall MR, Berk RS (1968) Microbial growth on mercaptosuccinic acid. Can J Microbiol 14:515–523

    Article  CAS  PubMed  Google Scholar 

  • Held KD, Biaglow JE (1994) Mechanisms for the oxygen radical-mediated toxicity of various thiol-containing compounds in cultured mammalian cells. Radiat Res 139:15–23

    Article  CAS  PubMed  Google Scholar 

  • Herrou J, Bompard C, Antoine R, Leroy A, Rucktooa P, Hot D, Huvent I, Locht C, Villeret V, Jacob-Dubuisson F (2007) Structure-based mechanism of ligand binding for periplasmic solute-binding protein of the Bug family. J Mol Biol 373:954–964. doi:10.1016/j.jmb.2007.08.006

    Article  CAS  PubMed  Google Scholar 

  • Huvent I, Belrhali H, Antoine R, Bompard C, Locht C, Jacob-Dubuisson F, Villeret V (2006a) Crystal structure of Bordetella pertussis BugD solute receptor unveils the basis of ligand binding in a new family of periplasmic binding proteins. J Mol Biol 356:1014–1026. doi:10.1016/j.jmb.2005.11.096

    Article  CAS  PubMed  Google Scholar 

  • Huvent I, Belrhali H, Antoine R, Bompard C, Locht C, Jacob-Dubuisson F, Villeret V (2006b) Structural analysis of Bordetella pertussis BugE solute receptor in a bound conformation. Acta Crystallogr D Biol Crystallogr 62:1375–1381. doi:10.1107/S0907444906032653

    Article  PubMed  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418. doi:10.1146/annurev.micro.57.030502.090938

    Article  CAS  PubMed  Google Scholar 

  • Kanudia P, Mittal M, Kumaran S, Chakraborti PK (2011) Amino-terminal extension present in the methionine aminopeptidase type 1c of Mycobacterium tuberculosis is indispensible for its activity. BMC Biochem 12: 35-2091-12-35. DOI 10.1186/1471-2091-12-35

  • Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001) Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiol UK 147:11–19

    Google Scholar 

  • Matthies A, Nimtz M, Leimkühler S (2005) Molybdenum cofactor biosynthesis in humans: identification of a persulfide group in the rhodanese-like domain of MOCS3 by mass spectrometry. Biochemistry 44:7912–7920. doi:10.1021/bi0503448

    Article  CAS  PubMed  Google Scholar 

  • Poole LB (2005) Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys 433:240–254. doi:10.1016/j.abb.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  • Prat L, Maillard J, Rohrbach-Brandt E, Holliger C (2012) An unusual tandem-domain rhodanese harbouring two active sites identified in Desulfitobacterium hafniense. FEBS J 279:2754–2767. doi:10.1111/j.1742-4658.2012.08660.x

    Article  CAS  PubMed  Google Scholar 

  • Raberg M, Reinecke F, Reichelt R, Malkus U, König S, Pötter M, Fricke WF, Pohlmann A, Voigt B, Hecker M, Friedrich B, Bowien B, Steinbüchel A (2008) Ralstonia eutropha H16 flagellation changes according to nutrient supply and state of poly(3-hydroxybutyrate) accumulation. Appl Environ Microbiol 74:4477–4490. doi:10.1128/AEM.00440-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rabilloud T, Blisnick T, Heller M, Luche S, Aebersold R, Lunardi J, Braun-Breton C (1999) Analysis of membrane proteins by two-dimensional electrophoresis: Comparison of the proteins extracted from normal or Plasmodium falciparum-infected erythrocyte ghosts. Electrophoresis 20:3603–3610. doi:10.1002/(SICI)1522-2683(19991201)20:18<3603::AID-ELPS3603>3.0.CO;2-V

    Article  CAS  PubMed  Google Scholar 

  • Riddles PW, Blakeley RL, Zerner B (1983) Reassessment of Ellman’s reagent. Methods Enzymol 91:49–60

    Article  CAS  PubMed  Google Scholar 

  • Rizvi SB, Yildirimer L, Ghaderi S, Ramesh B, Seifalian AM, Keshtgar M (2012) A novel POSS-coated quantum dot for biological application. Int J Nanomedicine 7:3915–3927. doi:10.2147/IJN.S28577

    PubMed Central  PubMed  Google Scholar 

  • Satola B, Wübbeler JH, Steinbüchel A (2013) Metabolic characteristics of the species Variovorax paradoxus. Appl Microbiol Biotechnol 97:541–560. doi:10.1007/s00253-012-4585-z

    Article  CAS  PubMed  Google Scholar 

  • Schlegel HG, Gottschalk G, von Bartha R (1961) Formation and utilization of poly-beta-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463–465

    Article  CAS  PubMed  Google Scholar 

  • Stalon V, Vander Wauven C, Momin P, Legrain C (1987) Catabolism of arginine, citrulline and ornithine by Pseudomonas and related bacteria. J Gen Microbiol 133:2487–2495

    CAS  PubMed  Google Scholar 

  • Steeves CH, Potrykus J, Barnett DA, Bearne SL (2011) Oxidative stress response in the opportunistic oral pathogen Fusobacterium nucleatum. Proteomics 11:2027–2037. doi:10.1002/pmic.201000631

    Article  CAS  PubMed  Google Scholar 

  • Stipanuk MH, Simmons CR, Karplus PA, Dominy JE Jr (2011) Thiol dioxygenases: unique families of cupin proteins. Amino Acids 41:91–102. doi:10.1007/s00726-010-0518-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strange RC, Spiteri MA, Ramachandran S, Fryer AA (2001) Glutathione-S-transferase family of enzymes. Mutat Res 482:21–26. doi:10.1016/S0027-5107(01)00206-8

    Article  CAS  PubMed  Google Scholar 

  • Vance PG, Keele BB Jr, Rajagopalan KV (1972) Superoxide dismutase from Streptococcus mutans: isolation and characterization of two forms of the enzyme. J Biol Chem 247:4782–4786

    CAS  PubMed  Google Scholar 

  • Wang XY, Zhang ZR, Perrett S (2009) Characterization of the activity and folding of the glutathione transferase from Escherichia coli and the roles of residues Cys10and His106. Biochem J 417:55–64. doi:10.1042/BJ20071702

    Article  CAS  PubMed  Google Scholar 

  • Willems A, Deley J, Gillis M, Kersters K (1991) Comamonadaceae, a new family encompassing the Acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int J Syst Bacteriol 41:445–450

    Article  Google Scholar 

  • Wolf C, Hochgräfe F, Kusch H, Albrecht D, Hecker M, Engelmann S (2008) Proteomic analysis of antioxidant strategies of Staphylococcus aureus: diverse responses to different oxidants. Proteomics 8:3139–3153. doi:10.1002/pmic.200701062

    Article  CAS  PubMed  Google Scholar 

  • Ying E, Li D, Guo S, Dong S, Wang J (2008) Synthesis and bio-imaging application of highly luminescent mercaptosuccinic acid-coated CdTe nanocrystals. PLoS ONE 3:e2222. doi:10.1371/journal.pone.0002222

    Article  PubMed Central  PubMed  Google Scholar 

  • Yong K, Ding H, Roy I, Law W, Bergey EJ, Maitra A, Prasad PN (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3:502–510. doi:10.1021/nn8008933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steinbüchel.

Additional information

Ulrike Brandt and Christina Waletzko contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1099 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandt, U., Waletzko, C., Voigt, B. et al. Mercaptosuccinate metabolism in Variovorax paradoxus strain B4—a proteomic approach. Appl Microbiol Biotechnol 98, 6039–6050 (2014). https://doi.org/10.1007/s00253-014-5811-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5811-7

Keywords

Navigation