Skip to main content
Log in

Integrated proteomic and transcriptomic analysis reveals novel genes and regulatory mechanisms involved in salt stress responses in Synechocystis sp. PCC 6803

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Salt stress is a common stress that limits growth and productivity of photosynthetic microbes in natural environments. Although cellular responses of a model cyanobacterium Synechocystis sp. PCC6803 to high and changing salt concentration have been studied, it remains undefined of the gene components and their regulation in the long-term salt acclimation networks. In this study, we performed an integrated study coupling a quantitative iTRAQ-LC-MS/MS proteomics and a next-generation sequencing-based RNA-seq transcriptomics on Synechocystis under salt stress for an extended period of time. Comparative quantification of protein abundances led to the identification of 68 and 108 proteins differentially regulated by salt treatment at 24 and 48 h, respectively. RNA-seq transcriptomic analysis showed that genes involved in energy metabolism and protein synthesis, and genes encoding hypothetical proteins responded to salt stress in a phase-dependent pattern. Notably, a gene encoding CO2-uptake-related protein (CupA) and three genes encoding hypothetical proteins were induced significantly at either transcript or protein level after long-term salt stress. Gene knockout and comparative growth analysis demonstrated that these four genes were involved in salt tolerance in Synechocystis. In addition, a complementary proteome and transcriptome analysis showed that concordance between protein abundances and their corresponding mRNAs varied significantly between various gene–protein pairs, indicating divergent regulation of transcriptional and post-transcriptional processes during salt stress adaptation in Synechocystis. The study provided new insights on genes and regulatory mechanism involved in salt stress response in Synechocystis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci U S A 96:5862–5867

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol 130:1443–1453

    Article  PubMed  CAS  Google Scholar 

  • Asadulghani NK, Kaneko Y, Kojima K, Fukuzawa H, Kosaka H, Nakamoto H (2004) Comparative analysis of the hspA mutant and wild-type Synechocystis sp strain PCC 6803 under salt stress: evaluation of the role of hspA in salt-stress management. Arch Microbiol 182:487–497

    Article  PubMed  CAS  Google Scholar 

  • Beyer A, Hollunder J, Nasheuer HP, Wilhelm T (2004) Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol Cell Proteomics 3:1083–1092

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Mehlhorn RJ, Packer L (1983) Ionic osmoregulation during salt adaptation of the cyanobacterium Synechococcus 6311. Plant Physiol 73:377–380

    Article  PubMed  CAS  Google Scholar 

  • Brockmann R, Beyer A, Heinisch JJ, Wilhelm T (2007) Posttranscriptional expression regulation: what determines translation rates? PLoS Comput Biol 3:e57

    Article  PubMed  Google Scholar 

  • DiLeo MV, Strahan GD, den Bakker M, Hoekenga OA (2011) Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS One 6:26683

    Article  Google Scholar 

  • Fulda S, Huang F, Nilsson F, Hagemann M, Norling B (2000) Proteomics of Synechocystis sp strain PCC 6803 identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur J Biochem 267:5900–5907

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Mikkat S, Huang F, Huckauf J, Marin K, Norling B, Hagemann M (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp strain PCC 6803. Proteomics 6:2733–2745

    Article  PubMed  CAS  Google Scholar 

  • Gong H, Tang Y, Wang J, Wen X, Zhang L, Lu C (2008) Characterization of photosystem II in salt-stressed cyanobacterial Spirulina platensis cells. Biochim Biophys Acta 1777:488–495

    Article  PubMed  CAS  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  PubMed  CAS  Google Scholar 

  • Hagemann M, Fulda S, Schubert H (1994) DNA RNA and protein synthesis in the cyanobacterium Synechocystis sp PCC 6803 adapted to different salt concentrations. Curr Microbiol 28:201–207

    Article  CAS  Google Scholar 

  • Hahne H, Mäder U, Otto A, Bonn F, Steil L, Bremer E, Hecker M, Becher D (2009) A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. J Bacteriol 192:870–882

    Article  PubMed  Google Scholar 

  • Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z, Lee Y, Scheck AC, Liau LM, Wu H, Geschwind DH, Febbo PG, Kornblum HI, Cloughesy TF, Nelson SF, Mischel PS (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci U S A 103:17402–17407

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Fulda S, Hagemann M, Norling B (2006) Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp strain PCC 6803. Proteomics 6:910–920

    Article  PubMed  CAS  Google Scholar 

  • Ishii A, Hihara Y (2008) An AbrB-like transcriptional regulator Sll0822 is essential for the activation of nitrogen-regulated genes in Synechocystis sp PCC 6803. Plant Physiol 148:660–670

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Tabata S (1997) Complete genome structure of the unicellular cyanobacterium Synechocystis sp PCC6803. Plant Cell Physiol 38:1171–1176

    Article  PubMed  CAS  Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp PCC 6803. Biochem Biophys Res Commun 290:339–348

    Article  PubMed  CAS  Google Scholar 

  • Klahn S, Steglich C, Hess WR, Hagemann M (2009) Glucosylglycerate: a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments. Environ Microbiol 12:83–94

    Article  PubMed  Google Scholar 

  • Krasikov V, Aguirre von Wobeser E, Dekker HL, Huisman J, Matthijs HC (2012) Time-series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803. Physiol Plant 145:426–439

    Article  PubMed  CAS  Google Scholar 

  • Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J (2012) Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels 5:18

    Article  PubMed  CAS  Google Scholar 

  • Li T, Yang HM, Cui SX, Suzuki I, Zhang LF, Li L, Bo TT, Wang J, Murata N, Huang F (2011) Proteomic study of the impact of Hik33 mutation in Synechocystis sp PCC 6803 under normal and salt stress conditions. J Proteome Res 11:502–514

    Article  PubMed  Google Scholar 

  • Liang C, Zhang X, Chi X, Guan X, Li Y, Qin S, Shao HB (2011) Serine/threonine protein kinase SpkG is a candidate for high salt resistance in the unicellular cyanobacterium Synechocystis sp PCC 6803. PLoS One 6:e18718

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Chen L, Wang J, Qiao J, Zhang W (2012) Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp PCC 6803. Biotechnol Biofuels 5:68

    Article  PubMed  CAS  Google Scholar 

  • Marin K, Kanesaki Y, Los DA, Murata N, Suzuki I, Hagemann M (2004) Gene expression profiling reflects physiological processes in salt acclimation of Synechocystis sp strain PCC 6803. Plant Physiol 136:3290–3300

    Article  PubMed  CAS  Google Scholar 

  • Marin K, Suzuki I, Yamaguchi K, Ribbeck K, Yamamoto H, Kanesaki Y, Hagemann M, Murata N (2003) Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp PCC 6803. Proc Natl Acad Sci U S A 100:9061–9066

    Article  PubMed  CAS  Google Scholar 

  • Matsuda N, Kobayashi H, Katoh H, Ogawa T, Futatsugi L, Nakamura T, Bakker EP, Uozumi N (2004) Na+-dependent K+ uptake Ktr system from the cyanobacterium Synechocystis sp PCC 6803 and its role in the early phases of cell adaptation to hyperosmotic shock. J Biol Chem 279:54952–54962

    Article  PubMed  CAS  Google Scholar 

  • Nie L, Wu G, Zhang W (2006) Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: a quantitative analysis. Genetics 174:2229–2243

    Article  PubMed  CAS  Google Scholar 

  • Nikkinen HL, Hakkila K, Gunnelius L, Huokko T, Pollari M, Tyystjarvi T (2011) The SigB sigma factor regulates multiple salt acclimation responses of the cyanobacterium Synechocystis sp PCC 6803. Plant Physiol 158:514–523

    Article  PubMed  Google Scholar 

  • Osanai T, Imamura S, Asayama M, Shirai M, Suzuki I, Murata N, Tanaka K (2006) Nitrogen induction of sugar catabolic gene expression in Synechocystis sp PCC 6803. DNA Res 13:185–195

    Article  PubMed  CAS  Google Scholar 

  • Pandhal J, Wright PC, Biggs CA (2008) Proteomics with a pinch of salt: a cyanobacterial perspective. Saline Systems 4:1

    Article  PubMed  Google Scholar 

  • Qiao J, Shao M, Chen L, Wang J, Wu G, Tian X, Liu J, Huang S, Zhang W (2012a) Systematic characterization of hypothetical proteins in Synechocystis sp PCC 6803 reveals proteins functionally relevant to stress responses. Gene 512:6–15

    Article  PubMed  Google Scholar 

  • Qiao J, Wang J, Chen L, Tian X, Huang S, Ren X, Zhang W (2012b) Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp PCC 6803. J Proteome Res 11:5286–5300

    Article  PubMed  CAS  Google Scholar 

  • Reed RH, Warr RC, Richardson DL, Moore DJ, Stewart DP (1985) Multiphasic osmotic adjustment in a euryhaline cyanobacterium. FEMS Microbiol Lett 28:225–229

    Article  CAS  Google Scholar 

  • Sakamoto T, Murata N (2002) Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr Opin Microbiol 5:208–210

    Article  PubMed  Google Scholar 

  • Schmid AK, Reiss DJ, Kaur A, Pan M, King N, Van PT, Hohmann L, Martin DB, Baliga NS (2007) The anatomy of microbial cell state transitions in response to oxygen. Genome Res 17:1399–1413

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S, Kaplan A, Ogawa T (2001) Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci U S A 98:11789–11794

    Article  PubMed  CAS  Google Scholar 

  • Shoumskaya MA, Paithoonrangsarid K, Kanesaki Y, Los DA, Zinchenko VV, Tanticharoen M, Suzuki I, Murata N (2005) Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis. J Biol Chem 280:21531–21538

    Article  PubMed  CAS  Google Scholar 

  • Singh SC, Sinha RP, Donat P (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308

    CAS  Google Scholar 

  • Thelwell C, Robinson NJ, Turner-Cavet JS (1998) An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc Natl Acad Sci U S A 95:10728–10733

    Article  PubMed  CAS  Google Scholar 

  • Tian X, Chen L, Wang J, Qiao J, Zhang W (2012) Quantitative proteomics reveals dynamic responses of Synechocystis sp PCC 6803 to next-generation biofuel butanol. J Proteomics 78:326–345

    Article  PubMed  Google Scholar 

  • Tu CJ, Shrager J, Burnap RL, Postier BL, Grossman AR (2004) Consequences of a deletion in dspA on transcript accumulation in Synechocystis sp strain PCC6803. J Bacteriol 186:3889–3902

    Article  PubMed  CAS  Google Scholar 

  • Wang HL, Postier BL, Burnap RL (2002) Optimization of fusion PCR for in vitro construction of gene knockout fragments. Biotechniques 33:26, 28, 30 passim

    PubMed  CAS  Google Scholar 

  • Wang J, Chen L, Huang S, Liu J, Ren X, Tian X, Qiao J, Zhang W (2012) RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp PCC 6803. Biotechnol Biofuels 5:89

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sommerfeld M, Hu Q (2009) Occurrence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae). Planta 230:191–203

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wu G, Chen L, Zhang W (2013) Cross-species transcriptional network analysis reveals conservation and variation in response to metal stress in cyanobacteria. BMC Genomics 14:112

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Nie L, Zhang W (2008) Integrative analyses of posttranscriptional regulation in the yeast Saccharomyces cerevisiae using transcriptomic and proteomic data. Curr Microbiol 57:18–22

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol 4:17

    Google Scholar 

Download references

Acknowledgment

The research was supported by grants from National Basic Research Program of China (“973” program, project no. 2011CBA00803 and no. 2012CB721101) and National High-tech R&D Program (“863” program, project no. 2012AA02A707). The authors would also like to thank Tianjin University and the “985 Project” of Ministry of Education for their financial supports in establishing the research laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwen Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 28 kb)

ESM 2

(XLS 87 kb)

ESM 3

(XLS 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, J., Huang, S., Te, R. et al. Integrated proteomic and transcriptomic analysis reveals novel genes and regulatory mechanisms involved in salt stress responses in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 97, 8253–8264 (2013). https://doi.org/10.1007/s00253-013-5139-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5139-8

Keywords

Navigation