Skip to main content
Log in

Available methods for assembling expression cassettes for synthetic biology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Studies in the structural biology of the multicomponent protein complex, metabolic engineering, and synthetic biology frequently rely on the efficient over-expression of these subunits or enzymes in the same cell. As a first step, constructing the multiple expression cassettes will be a complicated and time-consuming job if the classic and conventional digestion and ligation based cloning method is used. Some more efficient methods have been developed, including (1) the employment of a multiple compatible plasmid expression system, (2) the rare-cutter-based design of vectors, (3) in vitro recombination (sequence and ligation independent cloning, the isothermally enzymatic assembly of DNA molecules in a single reaction), and (4) in vivo recombination using recombination-efficient yeast (in vivo assembly of overlapping fragments, reiterative recombination for the chromosome integration of foreign expression cassettes). In this review, we systematically introduce these available methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  • Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18(20):6069–6074

    Article  CAS  Google Scholar 

  • Aslanidis C, de Jong PJ, Schmitz G (1994) Minimal length requirement of the single-stranded tails for ligation-independent cloning (LIC) of PCR products. PCR Methods Appl 4(3):172–177

    CAS  Google Scholar 

  • Berger I, Fitzgerald DJ, Richmond TJ (2004) Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22(12):1583–1587. doi:10.1038/nbt1036

    Article  CAS  Google Scholar 

  • Bieniossek C, Nie Y, Frey D, Olieric N, Schaffitzel C, Collinson I, Romier C, Berger P, Richmond TJ, Steinmetz MO, Berger I (2009) Automated unrestricted multigene recombineering for multiprotein complex production. Nat Methods 6(6):447–450. doi:10.1038/nmeth.1326

    Article  CAS  Google Scholar 

  • Busso D, Peleg Y, Heidebrecht T, Romier C, Jacobovitch Y, Dantes A, Salim L, Troesch E, Schuetz A, Heinemann U, Folkers GE, Geerlof A, Wilmanns M, Polewacz A, Quedenau C, Bussow K, Adamson R, Blagova E, Walton J, Cartwright JL, Bird LE, Owens RJ, Berrow NS, Wilson KS, Sussman JL, Perrakis A, Celie PH (2011) Expression of protein complexes using multiple Escherichia coli protein co-expression systems: a benchmarking study. J Struct Biol 175(2):159–170. doi:10.1016/j.jsb.2011.03.004

    Article  CAS  Google Scholar 

  • Carrera J, Rodrigo G, Jaramillo A (2009) Towards the automated engineering of a synthetic genome. Mol Biosyst 5(7):733–743. doi:10.1039/b904400k

    Article  CAS  Google Scholar 

  • Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70(11):3240–3244

    Article  CAS  Google Scholar 

  • Cowieson NP, Kobe B, Martin JL (2008) United we stand: combining structural methods. Curr Opin Struct Biol 18(5):617–622. doi:10.1016/j.sbi.2008.07.004

    Article  CAS  Google Scholar 

  • Dennis K, Srienc F, Bailey JE (1985) Ampicillin effects on five recombinant Escherichia coli strains: implications for selection pressure design. Biotechnol Bioeng 27(10):1490–1494. doi:10.1002/bit.260271014

    Article  CAS  Google Scholar 

  • Dymond JS, Richardson SM, Coombes CE, Babatz T, Muller H, Annaluru N, Blake WJ, Schwerzmann JW, Dai J, Lindstrom DL, Boeke AC, Gottschling DE, Chandrasegaran S, Bader JS, Boeke JD (2011) Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477(7365):471–476. doi:10.1038/nature10403

    Article  CAS  Google Scholar 

  • Fitzgerald DJ, Berger P, Schaffitzel C, Yamada K, Richmond TJ, Berger I (2006) Protein complex expression by using multigene baculoviral vectors. Nat Methods 3(12):1021–1032. doi:10.1038/nmeth983

    Article  CAS  Google Scholar 

  • Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA, Smith HO (2008a) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867):1215–1220. doi:10.1126/science.1151721

    Article  CAS  Google Scholar 

  • Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA (2008b) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci U S A 105(51):20404–20409. doi:10.1073/pnas.0811011106

    Article  CAS  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. doi:10.1038/nmeth.1318

    Article  CAS  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56. doi:10.1126/science.1190719

    Article  CAS  Google Scholar 

  • Gunyuzlu PL, Hollis GF,Toyn JH (2001) Plasmid construction by linker-assisted homologous recombination in yeast. Biotechniques 31(6):1246, 1248, 1250

    Google Scholar 

  • Kaznessis YN (2007) Models for synthetic biology. BMC Syst Biol 1:47. doi:10.1186/1752-0509-1-47

    Article  Google Scholar 

  • Kim KJ, Kim HE, Lee KH, Han W, Yi MJ, Jeong J, Oh BH (2004) Two-promoter vector is highly efficient for overproduction of protein complexes. Protein Sci 13(6):1698–1703. doi:10.1110/ps.04644504

    Article  CAS  Google Scholar 

  • Krivoruchko A, Siewers V, Nielsen J (2011) Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol J 6(3):262–276. doi:10.1002/biot.201000308

    Article  CAS  Google Scholar 

  • Lee JW, Kim TY, Jang YS, Choi S, Lee SY (2011) Systems metabolic engineering for chemicals and materials. Trends Biotechnol 29(8):370–378. doi:10.1016/j.tibtech.2011.04.001

    Article  CAS  Google Scholar 

  • Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4(3):251–256. doi:10.1038/nmeth1010

    Article  CAS  Google Scholar 

  • Ma H, Kunes S, Schatz PJ, Botstein D (1987) Plasmid construction by homologous recombination in yeast. Gene 58(2–3):201–216

    Article  CAS  Google Scholar 

  • McArthur GHT, Fong SS (2010) Toward engineering synthetic microbial metabolism. J Biomed Biotechnol 2010:459760. doi:10.1155/2010/459760

    Article  Google Scholar 

  • Miyazaki K (2011) MEGAWHOP cloning: a method of creating random mutagenesis libraries via megaprimer PCR of whole plasmids. Methods Enzymol 498:399–406. doi:10.1016/B978-0-12-385120-8.00017-6

    CAS  Google Scholar 

  • Miyazaki K,Takenouchi M (2002) Creating random mutagenesis libraries using megaprimer PCR of whole plasmid. Biotechniques 33(5):1033–1034, 1036–1038

    Google Scholar 

  • Na D, Kim TY, Lee SY (2010) Construction and optimization of synthetic pathways in metabolic engineering. Curr Opin Microbiol 13(3):363–370. doi:10.1016/j.mib.2010.02.004

    Article  CAS  Google Scholar 

  • Nandagopal N, Elowitz MB (2011) Synthetic biology: integrated gene circuits. Science 333(6047):1244–1248. doi:10.1126/science.1207084

    Article  CAS  Google Scholar 

  • Perrakis A, Musacchio A, Cusack S, Petosa C (2011) Investigating a macromolecular complex: the toolkit of methods. J Struct Biol 175(2):106–112. doi:10.1016/j.jsb.2011.05.014

    Article  CAS  Google Scholar 

  • Portnoy VA, Bezdan D, Zengler K (2011) Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol 22(4):590–594. doi:10.1016/j.copbio.2011.03.007

    Article  CAS  Google Scholar 

  • Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10(6):410–422. doi:10.1038/nrm2698

    Article  CAS  Google Scholar 

  • Ramon A, Smith HO (2011) Single-step linker-based combinatorial assembly of promoter and gene cassettes for pathway engineering. Biotechnol Lett 33(3):549–555. doi:10.1007/s10529-010-0455-x

    Article  CAS  Google Scholar 

  • Raymond CK, Pownder TA,Sexson SL (1999) General method for plasmid construction using homologous recombination. Biotechniques 26(1):134–138, 140–131.

    Google Scholar 

  • Scheich C, Kummel D, Soumailakakis D, Heinemann U, Bussow K (2007) Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res 35(6):e43. doi:10.1093/nar/gkm067

    Article  Google Scholar 

  • Storici F, Durham CL, Gordenin DA, Resnick MA (2003) Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc Natl Acad Sci U S A 100(25):14994–14999. doi:10.1073/pnas.2036296100

    Article  CAS  Google Scholar 

  • Tillett D, Neilan BA (1999) Enzyme-free cloning: a rapid method to clone PCR products independent of vector restriction enzyme sites. Nucleic Acids Res 27(19):e26

    Article  CAS  Google Scholar 

  • Vick JE, Johnson ET, Choudhary S, Bloch SE, Lopez-Gallego F, Srivastava P, Tikh IB, Wawrzyn GT, Schmidt-Dannert C (2011) Optimized compatible set of BioBrick vectors for metabolic pathway engineering. Appl Microbiol Biotechnol 92(6):1275–1286. doi:10.1007/s00253-011-3633-4

    Article  CAS  Google Scholar 

  • Wakamori M, Umehara T, Yokoyama S (2010) A series of bacterial co-expression vectors with rare-cutter recognition sequences. Protein Expr Purif 74(1):88–98. doi:10.1016/j.pep.2010.06.016

    Article  CAS  Google Scholar 

  • Wang TW, Zhu H, Ma XY, Zhang T, Ma YS, Wei DZ (2006) Mutant library construction in directed molecular evolution: casting a wider net. Mol Biotechnol 34(1):55–68. doi:10.1385/MB:34:1:55

    Article  Google Scholar 

  • Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898. doi:10.1038/nature08187

    Article  CAS  Google Scholar 

  • Wingler LM, Cornish VW (2011) Reiterative recombination for the in vivo assembly of libraries of multigene pathways. Proc Natl Acad Sci U S A 108(37):15135–15140. doi:10.1073/pnas.1100507108

    Article  Google Scholar 

  • Wladyka B, Puzia K, Dubin A (2005) Efficient co-expression of a recombinant staphopain A and its inhibitor staphostatin A in Escherichia coli. Biochem J 385(Pt 1):181–187. doi:10.1042/BJ20040958

    CAS  Google Scholar 

  • Yang W, Zhang L, Lu Z, Tao W, Zhai Z (2001) A new method for protein coexpression in Escherichia coli using two incompatible plasmids. Protein Expr Purif 22(3):472–478. doi:10.1006/prep.2001.1453

    Article  CAS  Google Scholar 

  • Yokoyama S (2003) Protein expression systems for structural genomics and proteomics. Curr Opin Chem Biol 7(1):39–43. doi:S1367593102000194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Grants from the National Science Foundation of China (31000054, 30873190) and the Fundamental Research Funds for the Central Universities (No. JUSRP10917) supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyuan Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Ma, X., Zhu, H. et al. Available methods for assembling expression cassettes for synthetic biology. Appl Microbiol Biotechnol 93, 1853–1863 (2012). https://doi.org/10.1007/s00253-012-3920-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3920-8

Keywords

Navigation