Skip to main content
Log in

Symbiotic abilities of Sinorhizobium fredii with modified expression of purL

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Previous reports showed that a transposon-induced PurL mutant of Sinorhizobium fredii induced pseudonodules on Glycine max and the addition of 5-aminoimidazole-4-carboxamide-riboside or adenine to the plant could not restore the mutant to establish effective symbiosis. To gain a better understanding of the impact of the purL gene on symbiosis formation, we measured the effect of modified expression of this gene on the symbiotic abilities of S. fredii on soybean (G. max). A 1.98-kb in-frame deletion mutant in the purL gene of S. fredii was constructed. Transcriptional modification of the purL gene was conducted using several promoters such as those of lac, nifH, nifQ, and fixN. It was found that reduced expression of purL gene or suitable symbiotic expression of purL (such as with the promoter nifH or nifQ) can efficiently establish symbiosis of S. fredii on G. max without the exogenous supplementation of any adenine or purine precursor; at least a minimal level of expression of purL is essential for effective symbiosis with soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Batut J, Terzaghi B, Gherardi M, Huguet M, Terzaghi E, Garnerone AM, Boistard P, Huguet T (1985) Localization of a symbiotic fix region on Rhizobium meliloti pSym megaplasmid more than 200 kilobases from the nod–nif region. Mol Gen Genet 199:232–239

    Article  CAS  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  • Buendía-Clavería AM, Chamber M, Ruiz-Sainz JE (1989) A comparative study of the physiological characteristics, plasmid content and symbiotic properties of different Rhizobium fredii in European soils. Syst Appl Bacteriol 17:155–160

    Google Scholar 

  • Buendia-Claveria AM, Moussaid A, Ollero FJ, Vinardell JM, Torres A, Moreno J, Gil-Serrano AM, Rodriguez-Carvajal MA, Tejero-Mateo P, Peart JL, Brewin NJ, Ruiz-Sainz JE (2003) A purL mutant of Sinorhizobium fredii HH103 is symbiotically defective and altered in its lipopolysaccharide. Microbiology 149:1807–1818

    Article  CAS  Google Scholar 

  • Collavino M, Ruccukki PM, Grasso DH, Crespi M, Aguilar OM (2005) GuaB activity is required in Rhizobium tropici during the early stages of nodulation of determinate nodules but is dispensable for the Sinorhizobium meliloti–alfalfa symbiotic interaction. Mol Plant-Microbe Interact 18:742–750

    Article  CAS  Google Scholar 

  • Djordjevic SP, Ridge RW, Chen H, Redmond JW, Batley M, Rolfe BG (1988) Induction of pathogenic-like responses in the legume Macroptilium atropurpureum by a transposon-induced mutant of the fast-growing, broad-host-range Rhizobium strain NGR234. J Bacteriol 170:1848–1857

    Article  CAS  Google Scholar 

  • Djordjevic SP, Weinman JJ, Redmond JW, Djordjevic MA, Rolfe BG (1996) The addition of 5-aminoimidazole-4-carboxamide-riboside to nodulation-defective purine auxotrophs of NGR234 restores bacterial growth but leads to novel root out growths on Siratro. Mol Plant-Microbe Interact 9:114–124

    Article  CAS  Google Scholar 

  • Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RF, Long SR (1992) Rhizobium-plant signal exchange. Nature 357:655–660

    Article  CAS  Google Scholar 

  • Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the Rhizobium–legume symbiosis. Eur J Biochem 270:1365–1380

    Article  CAS  Google Scholar 

  • González JE, York GM, Walker GC (1996) Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene 179:141–146

    Article  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  Google Scholar 

  • Janssen GR, Bibb MJ (1993) Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124:133–134

    Article  CAS  Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) β-Glucuronidase from E. coli as a gene fusion marker. Proc Natl Acad Sci U S A 83:8447–8451

    Article  CAS  Google Scholar 

  • Kerppola TK, Kahn ML (1988) Symbiotic phenotypes of auxotrophic mutants of Rhizobium meliloti 104A14. J Gen Microbiol 134:913–919

    CAS  PubMed  Google Scholar 

  • Kittelberger R, Hilbink F (1993) Sensitive silver-staining detection of bacterial lipopolysaccharides in polyacrylamide gels. J Biochem Biophys Methods 26:81–86

    Article  CAS  Google Scholar 

  • Koplin R, Wang G, Hõtte B, Priefer UB, Puhler A (1993) A 3.9-kb DNA region of Xanthomonas campestris pv campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose. J Bacteriol 175:7786–7792

    Article  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  Google Scholar 

  • Lesse AJ, Campagnari AA, Bittner WE, Apicella MA (1990) Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis. J Immunol Methods 126:109–117

    Article  CAS  Google Scholar 

  • Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122

    Article  CAS  Google Scholar 

  • Newman JD, Schultz BW, Noel KD (1992) Dissection of nodule development by supplementation of Rhizobium leguminosarum biovar phaseoli purine auxotrophs with AICA riboside. Plant Physiol 99:401–408

    Article  CAS  Google Scholar 

  • Newman JD, Diebold RJ, Schultz BW, Noel KD (1994) Infection of soybean and pea nodules by Rhizobium spp. purine auxotrophs in the presence of 5-aminoimidazole-4-carboxamide riboside. J Bacteriol 176:3286–3294

    Article  CAS  Google Scholar 

  • Noel KD, Diebold RJ, Cava JR, Brink BA (1988) Rhizobial purine and pyrimidine auxotrophs: nutrient supplementation, genetic analysis, and the symbiotic requirement for de novo purine biosynthesis. Arch Microbiol 149:499–506

    Article  CAS  Google Scholar 

  • Oke V, Long SR (1999) Bacterial genes induced within the nodule during the Rhizobium–legume symbiosis. Mol Microbiol 32:837–849

    Article  CAS  Google Scholar 

  • Pain AN (1979) Symbiotic properties of antibiotic-resistant and auxotrophic mutants of Rhizobium leguminosarum. J Appl Bacteriol 47:53–64

    Article  CAS  Google Scholar 

  • Preisig O, Anthamatten D, Hennecke H (1993) Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci U S A 90:3309–3313

    Article  CAS  Google Scholar 

  • Prell J, Boesten B, Poole P, Priefer UB (2002) The Rhizobium leguminosarum bv. viciae VF39 ã-aminobutyrate (GABA) aminotransferase gene (gabT) is induced by GABA and highly expressed in bacteroids. Microbiology 148:615–623

    Article  CAS  Google Scholar 

  • Quandt J, Hynes MF (1993) Versatile suicide vectors which allow selection for gene replacement in Gram-negative bacteria. Gene 127:15–21

    Article  CAS  Google Scholar 

  • Riccillo PM, Collavino MM, Grasso DH, England R, Bruijn de FJ, Aguilar OM (2000) A guaB mutant strain of Rhizobium tropici CIAT899 pleiotropically defective in thermal tolerance and symbiosis. Mol Plant- Microbe Interact 13:1228–1236

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57

    Article  CAS  Google Scholar 

  • Simon R (1984) High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420

    Article  CAS  Google Scholar 

  • Streit WR, Phillips DA (1997). A biotin-regulated locus bioS, in a possible survival operon of Rhizobium meliloti. Mol Plant-Microbe Interact 10:933–937

    Article  CAS  Google Scholar 

  • Udvardi MK, Day DA (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol 48:493–523

    Article  CAS  Google Scholar 

  • van Rhijn PV, Vanderleyden J (1995) The Rhizobium–plant symbiosis. Microbiol Rev 59:124–142

    PubMed  PubMed Central  Google Scholar 

  • Weinstein M, Roberts RC, Helinski DR (1992) A region of the broad-host-range plasmid RK2 causes stable in planta inheritance of plasmids in Rhizobium meliloti cells isolated from alfalfa root nodules. J Bacteriol 174:7486–7489

    Article  CAS  Google Scholar 

  • Worland S, Guerreiro N, Yip L, Djordjevic MA, Weinman JJ, Djordjevic SP, Rolfe BG (1999) Rhizobium purine auxotrophs, perturbed in nodulation, have multiple changes in protein synthesis. Aust J Plant Physiol 26:511–519

    CAS  Google Scholar 

  • Xie B, Chen D, Li Y, Zhou J (2004) Construction and screening of purine auxotroph mutant of Sinorhizobium fredii. Acta Microbiologica Sinica 44:45–49

    Google Scholar 

  • Yelton MM, Mulligan JT, Long SR (1987) Expression of Rhizobium meliloti nod genes in Rhizobium spp. and Agrobacterium backgrounds. J Bacteriol 169:3094–3098

    Article  CAS  Google Scholar 

  • Zhang Z, Chen H, Li F, Fan Y (1991) Construction of gene library and isolation of pRaZ15 containing complete nodulation genes in Rhizobium astragali. Chin J Biotechnol 7:213–219

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by project 30270052 of the National Natural Science Foundation of China, project 001CB108901 of the Chinese Key-Fundamental Research Program, and project ICA4-CT-2001-10056 of the EC-RTD Program.

We thank Prof. Jose E. Ruiz-Sainz for providing the original information of S. fredii purL gene, Dr. M.F. Hynes for providing the suicide vectors, and Dr. Valerie Oke and Prof. Sharon R. Long for providing useful clone vectors. We are grateful to Prof. H.P. Spaink and Prof. Chencai Zhang for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Chu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, B., Chen, DS., Zhou, K. et al. Symbiotic abilities of Sinorhizobium fredii with modified expression of purL . Appl Microbiol Biotechnol 71, 505–514 (2006). https://doi.org/10.1007/s00253-005-0186-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0186-4

Keywords

Navigation