Skip to main content
Log in

Influences of Iron Compounds on Microbial Diversity and Improvements in Organic C, N, and P Removal Performances in Constructed Wetlands

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The effects of various combinations of iron compounds on the contaminant removal performance in constructed wetlands (CWs) were explored under various initial iron concentrations, contaminant concentrations, different hydraulic retention time (HRT), and different temperatures. The Combo 6 (nanoscale zero-valent iron combined with Fe3+) in CW treatments showed the highest pollutant removal performance under the conditions of C2 initial iron dosage concentration (total iron 0.2 mM) and I2 initial contaminant concentration (COD:TN:TP = 60 mg/L:60 mg/L:1 mg/L) in influent after 72-h HRT. These results were directly verified by two different microbial tests (Biolog test and high-throughput pyrosequencing) and microbial community analysis (principal component analysis of community-level physiological profile, biodiversity index, cluster tree, relative abundance at order of taxonomy level). Specific bacteria related to significant improvements in contaminant removal were domesticated by various combinations of iron compounds. Iron dosage was advised as a green, new, and effective option for wastewater treatment.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  2. Kumar P, Prot T, Korving L, Keesman KJ, Dugulan L, Van Loosdrecht MCM, Witkamp GJ (2017) Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption - importance of mesopores. Chem Eng J 326:231–239. https://doi.org/10.1016/j.cej.2017.05.147

    Article  CAS  Google Scholar 

  3. Ma XC, Zhou WG, Fu ZQ, Cheng YL, Min M, Liu YH, Zhang YK, Chen P, Ruan R (2014) Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresour Technol 167:8–13. https://doi.org/10.1016/j.biortech.2014.05.087

    Article  CAS  PubMed  Google Scholar 

  4. Skoog A, Arias-Esquivel VA (2009) The effect of induced anoxia and re-oxygenation on benthic fluxes of organic carbon, phosphate, iron, and manganese. Sci Total Environ 407:6085–6092. https://doi.org/10.1016/j.scitotenv.2009.08.030

    Article  CAS  PubMed  Google Scholar 

  5. Zhou LJ, Zhuang WQ, Wang X, Yu K, Yang SF, Xia SQ (2017) Potential effects of loading nano zero valent iron discharged on membrane fouling in an anoxic/oxic membrane bioreactor. Water Res 111:140–146. https://doi.org/10.1016/j.watres.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  6. Choi H, Al-Abed SR, Agarwal S, Dionysiou D (2008) Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chem Mater 20(11):3649–3655. https://doi.org/10.1021/cm8003613

    Article  CAS  Google Scholar 

  7. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122. https://doi.org/10.1016/j.advwatres.2012.02.005

    Article  CAS  Google Scholar 

  8. Kumar MA, Choe JK, Lee WJ, Yoon SH (2017) Synthesis of benzaldoxime from benzaldehyde using nanoscale zero-valent iron and dissolved nitrate or nitrite. Environ Nanotechnol Monit Manage 8:97–102. https://doi.org/10.1016/j.enmm.2017.06.003

    Article  CAS  Google Scholar 

  9. Lu Q, Jeen SW, Gui L, Gillham RW (2017) Nitrate reduction and its effects on trichloroethylene degradation by granular iron. Water Res 112:48–57. https://doi.org/10.1016/j.watres.2017.01.031

    Article  CAS  PubMed  Google Scholar 

  10. Jordan TE, Cornwell JC, Boynton WR, Anderson JT (2008) Changes in phosphorus biogeo-chemistry along an estuarine salinity gradient: the iron conveyer belt. Limnol Oceanogr 53:172–184. https://doi.org/10.4319/lo.2008.53.1.0172

    Article  CAS  Google Scholar 

  11. Song XS, Wang SY, Wang YH, Zhao ZM, Yan DH (2016) Addition of Fe2+ increase nitrate removal in vertical subsurface flow constructed wetlands. Ecol Eng 91:487–494. https://doi.org/10.1016/j.ecoleng.2016.03.013

    Article  Google Scholar 

  12. Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER (2017) Treatment technologies for emerging contaminants in water: a review. Chem Eng J 323:261–380. https://doi.org/10.1016/j.cej.2017.04.106

    Article  CAS  Google Scholar 

  13. Zhao ZM, Song XS, Wang W, Xiao YP, Gong ZJ, Wang YH, Zhao YF, Chen Y, Mei MY (2016) Influences of iron and calcium carbonate on wastewater treatment performances of algae-based reactors. Bioresour Technol 216:1–11. https://doi.org/10.1016/j.biortech.2016.05.043

    Article  CAS  PubMed  Google Scholar 

  14. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65. https://doi.org/10.1016/j.scitotenv.2006.09.014

    Article  CAS  PubMed  Google Scholar 

  15. Vymazal J (2010) Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol 45(1):61–69. https://doi.org/10.1021/es101403q

    Article  CAS  PubMed  Google Scholar 

  16. Zhao ZM, Song XS, Zhao YF, Xiao YP, Wang YH, Wang JF, Yan DH (2017) Effects of iron and calcium carbonate on the variation and cycling of carbon source in integrated wastewater treatments. Bioresour Technol 225:262–271. https://doi.org/10.1016/j.biortech.2016.11.074

    Article  CAS  Google Scholar 

  17. Zhao ZM, Song XS, Xiao YP, Zhao YF, Gong ZJ, Lin FD, Ding Y, Wang W, Qin TL (2016) Influences of seasons, N/P ratios and chemical compounds on phosphorus removal performance in algal pond combined with constructed wetlands. Sci Total Environ 573:906–914. https://doi.org/10.1016/j.scitotenv.2016.08.148

    Article  CAS  Google Scholar 

  18. Zhao ZM, Song XS, Zhang YJ, Zhao YF, Wang BD, Wang YH (2017) Effects of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in integrated wastewater treatment systems. Chemosphere 189:10–20. https://doi.org/10.1016/j.chemosphere.2017.09.020

    Article  CAS  PubMed  Google Scholar 

  19. Choi KH, Dobbs FC (1999) Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J Microbiol Methods 36:203–213. https://doi.org/10.1016/S0167-7012(99)00034-2

    Article  CAS  PubMed  Google Scholar 

  20. Pan F, Xu AH, Xia DS, Yu Y, Chen G, Meyer M, Zhao DY, Huang CH, Wu QW, Fu J (2015) Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor. Water Res 87:127–136. https://doi.org/10.1016/j.watres.2015.09.022

    Article  CAS  PubMed  Google Scholar 

  21. Allen B, Kon M, Bar-Yam Y (2009) A new phylogenetic diversity measure generalizing the Shannon index and its application to phyllostomid bats. Am Nat 174(2):236–243. https://doi.org/10.1086/600101

    Article  PubMed  Google Scholar 

  22. Jiang L, Han GM, Lan Y, Liu SN, Gao JP, Yang X, Meng J, Chen WF (2017) Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates. J Integr Agric 16(3):713–724. https://doi.org/10.1016/S2095-3119(16)61338-2

    Article  CAS  Google Scholar 

  23. Rutgers M, Wouterse M, Drost SM, Breure AM, Mulder C, Stone D, Creamer RE, Winding A, Bloem J (2016) Monitoring soil bacteria with community-level physiological profiles using Biolog TM ECO-plates in the Netherlands and Europe. Appl Soil Ecol 97:23–35. https://doi.org/10.1016/j.apsoil.2015.06.007

    Article  Google Scholar 

  24. Chang J, Wu SQ, Dai Y, Liang W, Wu ZB (2012) Treatment efficiency of integrated vertical-flow constructed wetland plots for domestic wastewater. Ecol Eng 44:152–159. https://doi.org/10.1016/j.ecoleng.2012.03.019

    Article  Google Scholar 

  25. Akratos CS, Tsihrintzis VA (2007) Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng 29(2):173–191. https://doi.org/10.1016/j.ecoleng.2006.06.013

    Article  Google Scholar 

  26. Mateus DMR, Vaz MN, Pinho HJO (2012) Fragmented limestone wastes as a constructed wetland substrate for phosphorus removal. Ecol Eng 41:65–69. https://doi.org/10.1016/j.ecoleng.2012.01.014

    Article  Google Scholar 

  27. Ding Y, Song XS, Wang YH, Yan DH (2013) Effect of supplying a carbon extracting solution on denitrification in horizontal subsurface flow constructed wetlands. Korean J Chem Eng 30(2):379–384. https://doi.org/10.1007/s11814-012-0139-4

    Article  CAS  Google Scholar 

  28. Moussavi G, Jafari SJ, Yaghmaeian K (2015) Enhanced biological denitrification in the cyclic rotating bed reactor with catechol as carbon source. Bioresour Technol 189:266–272. https://doi.org/10.1016/j.biortech.2015.04.019

    Article  CAS  PubMed  Google Scholar 

  29. Stefanakis AI, Tsihrintzis VA (2012) Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands. Chem Eng J 181-182:416–430. https://doi.org/10.1016/j.cej.2011.11.108

    Article  CAS  Google Scholar 

  30. Picardal F (2012) Abiotic and microbial interactions during anaerobic transformations of Fe (II) and NOx-. Front Microbiol 3:1–7. https://doi.org/10.3389/fmicb.2012.00112

    Article  Google Scholar 

  31. Zhao ZM, Song XS, Wang YH, Wang DY, Wang SY, He Y, Ding Y, Wang W, Yan DH, Wang JF (2016c) Effects of algal ponds on vertical flow constructed wetlands under different sewage application techniques. Ecol Eng 93:120–128. https://doi.org/10.1016/j.ecoleng.2016.05.033

    Article  Google Scholar 

  32. Shrestha J, Rich J, Ehrenfeld JG, Jaffe PR (2009) Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils: laboratory, field demonstrations, and push-pull rate determination. Soil Sci 174:156–164. https://doi.org/10.1097/SS.0b013e3181988fbf

    Article  CAS  Google Scholar 

  33. Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic: nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460. https://doi.org/10.1016/0921-8777(95)00057-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rozan TF, Taillefert M, Trouwborst RE, Glazer BT, Ma S, Herszage J, Lexia MV, Kent SP, George WL (2002) Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic microalga blooms. Limnol Oceanogr 47:1346–1354. https://doi.org/10.4319/lo.2002.47.5.1346

    Article  CAS  Google Scholar 

  35. Bruch I, Fritsche J, Bänninger D, Alewell U, Sendelov M, Hürlimann H, Hasselbach R, Alewell C (2011) Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands. Bioresour Technol 102:937–941. https://doi.org/10.1016/j.biortech.2010.09.0

    Article  CAS  PubMed  Google Scholar 

  36. Bongoua-Devisme AJ, Mustin C, Berthelin J (2012) Responses of iron-reducing bacteria to salinity and organic matter amendment in paddy soils of Thailand. Pedosphere 22:375–393. https://doi.org/10.1016/S1002-0160(12)60024-1

    Article  CAS  Google Scholar 

  37. Li XQ, Zhang WX (2006) Iron nanoparticles: the core-shell structure and unique properties for Ni (II) sequestration. Langmuir 22:4638–4642. https://doi.org/10.1021/la060057k

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Stanforth R (2000) Distinguishing adsorption and surface precipitation of phosphate on goethite (a-FeOOH). J Colloid Interface Sci 230:12–21. https://doi.org/10.1006/jcis.2000.7072

    Article  CAS  PubMed  Google Scholar 

  39. Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N (2015) Compact graphical representation of phylogenetic data and metadata with GraPhlAn. Peer J 3:e1029. https://doi.org/10.7717/peerj.1029

    Article  CAS  PubMed  Google Scholar 

  40. Vandewalle JL, Goetz GW, Huse SM, Morrison HG, Sogin ML, Hoffmann RG, Yan K, Mclellan SL (2012) Acinetobacter, Aeromonas and Trichococcus populations dominate the microbial community within urban sewer infrastructure. Environ Microbiol 14(9):2538–2552. https://doi.org/10.1111/j.1462-2920.2012.02757.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mohanakrishnan J, Gutierrez O, Sharma KR, Guisasola A, Werner U, Meyer RL, Keller J, Yuan Z (2009) Impact of nitrate addition on biofilm properties and activities in rising main sewers. Water Res 43:4225–4237. https://doi.org/10.1016/j.watres.2009.06.021

    Article  CAS  PubMed  Google Scholar 

  42. Kong X, Wang C, Ji M (2013) Analysis of microbial metabolic characteristics in mesophilic and thermophilic biofilters using Biolog plate technique. Chem Eng J 230:415–421. https://doi.org/10.1016/j.cej.2013.06.073

    Article  CAS  Google Scholar 

  43. Park SJ, Kim J, Lee JS, Rhee SK, Kim H (2014) Characterization of the fecal microbiome in different swine groups by high-through put sequencing. Anaerobe 28:157–162. https://doi.org/10.1016/j.anaerobe.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  44. Desai C, Parikh RY, Vaishnav T, Shouche YS, Madamwar D (2009) Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Res Microbiol 160:1–9. https://doi.org/10.1016/j.resmic.2008.10.003

    Article  CAS  PubMed  Google Scholar 

  45. Sinninghe Damsté JS, Rijpstra WIC, Geenevasen JAJ, Strous M, Jetten MSM (2005) Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J 272:4270–4283. https://doi.org/10.1111/j.1742-4658.2005.04842.x

    Article  CAS  PubMed  Google Scholar 

  46. Dunfield PF, Yuryev A, Senin P, Angela VS, Matthew BS, Hou SB, Ly B, Saw JH, Zhou ZM, Ren Y, Wang JM, Mountain BW, Crowe MA, Weatherby TM, Bodelier PLE, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450(7171):879–882. https://doi.org/10.1038/nature06411

    Article  CAS  PubMed  Google Scholar 

  47. Yousuf B, Keshri J, Mishra A, Jha B (2012) Application of targeted metagenomics to explore abundance and diversity of CO2-fixing bacterial community using cbbL gene from the rhizosphere of Arachis hypogaea. Gene 506:18–24. https://doi.org/10.1016/j.gene.2012.06.083

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinshan Song.

Additional information

Highlights

• Ferrous ions produced by nZVI and ferric ions realized the longer and higher performance in CWs.

• Produced ferrous ions rearranged the microbial abundance and diversity in CWs.

• The direct microbiological evidence of iron-driven contaminant removal was given.

• Produced iron ions promoted TP removal through precipitation and optimizing microbial conditions.

Electronic Supplementary Material

ESM 1

(DOCX 2000 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zhang, X., Cheng, M. et al. Influences of Iron Compounds on Microbial Diversity and Improvements in Organic C, N, and P Removal Performances in Constructed Wetlands. Microb Ecol 78, 792–803 (2019). https://doi.org/10.1007/s00248-019-01379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01379-7

Keywords

Navigation