Skip to main content
Log in

One-Time Addition of Nano-TiO2 Triggers Short-Term Responses in Benthic Bacterial Communities in Artificial Streams

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Nano-TiO2 is an engineered nanomaterial whose production and use are increasing rapidly. Hence, aquatic habitats are at risk for nano-TiO2 contamination due to potential inputs from urban and suburban runoff and domestic wastewater. Nano-TiO2 has been shown to be toxic to a wide range of aquatic organisms, but little is known about the effects of nano-TiO2 on benthic microbial communities. This study used artificial stream mesocosms to assess the effects of a single addition of nano-TiO2 (P25 at a final concentration of 1 mg l−1) on the abundance, activity, and community composition of sediment-associated bacterial communities. The addition of nano-TiO2 resulted in a rapid (within 1 day) decrease in bacterial abundance in artificial stream sediments, but bacterial abundance returned to control levels within 3 weeks. Pyrosequencing of partial 16S rRNA genes did not indicate any significant changes in the relative abundance of any bacterial taxa with nano-TiO2 treatment, indicating that nano-TiO2 was toxic to a broad range of bacterial taxa and that recovery of the bacterial communities was not driven by changes in community composition. Addition of nano-TiO2 also resulted in short-term increases in respiration rates and denitrification enzyme activity, with both returning to control levels within 3 weeks. The results of this study demonstrate that single-pulse additions of nano-TiO2 to aquatic habitats have the potential to significantly affect the abundance and activity of benthic microbial communities and suggest that interactions of TiO2 nanoparticles with environmental matrices may limit the duration of their toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen J, Liu M, Zhang L, Zhang J, Jin L (2003) Application of nano TiO2 towards polluted water treatment combined with electro-photochemical method. Water Res 37:3815

    Article  CAS  PubMed  Google Scholar 

  2. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891

    Article  CAS  PubMed  Google Scholar 

  3. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227

    Article  CAS  PubMed  Google Scholar 

  5. Lubick N (2008) Risks of nanotechnology remain uncertain. Environ Sci Technol 42:1821

    Article  CAS  PubMed  Google Scholar 

  6. Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69

    Article  CAS  PubMed  Google Scholar 

  7. Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233

    Article  CAS  PubMed  Google Scholar 

  8. Kiser M, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757

    Article  CAS  PubMed  Google Scholar 

  9. Tong T, Hill AN, Alsina MA, Wu J, Shang KY, Kelly JJ, Gray KA, Gaillard JF (2014) Spectroscopic characterization of TiO2 polymorphs in wastewater treatment and sediment samples. Environ Sci Technol Lett

  10. Westerhoff P, Song G, Hristovski K, Kiser MA (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monit 13:1195

    Article  CAS  PubMed  Google Scholar 

  11. Tong T, Binh CTT, Kelly JJ, Gaillard JF, Gray KA (2013) Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: effects of environmental factors. Water Res 47:2352

    Article  CAS  PubMed  Google Scholar 

  12. Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415

    Article  CAS  PubMed  Google Scholar 

  13. Griffitt RJ, Luo J, Gao J, Bonzongo J, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972

    Article  CAS  PubMed  Google Scholar 

  14. Reeves JF, Davies SJ, Dodd NJ, Jha AN (2008) Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res Fundam Mol Mech Mutagen 640:113

    Article  CAS  Google Scholar 

  15. Blaise C, Gagne F, Ferard J, Eullaffroy P (2008) Ecotoxicity of selected nano‐materials to aquatic organisms. Environ Toxicol 23:591

    Article  CAS  PubMed  Google Scholar 

  16. Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132

    Article  CAS  PubMed  Google Scholar 

  17. Velzeboer I, Hendriks AJ, Ragas AM, Van de Meent D (2008) Nanomaterials in the environment aquatic ecotoxicity tests of some nanomaterials. Environ Toxicol Chem 27:1942

    Article  CAS  PubMed  Google Scholar 

  18. Binh CTT, Tong T, Gaillard JF, Gray KA, Kelly JJ (2014) Acute effects of TiO2 nanomaterials on the viability and taxonomic composition of aquatic bacterial communities assessed via high-throughput screening and next generation sequencing. PLoS ONE 9(9):e106280

    Article  PubMed Central  PubMed  Google Scholar 

  19. Binh CTT, Tong T, Gaillard JF, Gray KA, Kelly JJ (2014) Common freshwater bacteria vary in their responses to short-term exposure to nano-TiO2. Environ Toxicol Chem 33:317

    Article  CAS  PubMed  Google Scholar 

  20. Tong T, Shereef A, Wu J, Binh CTT, Kelly JJ, Gaillard JF, Gray KA (2013) Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environ Sci Technol 47:12486

    Article  CAS  PubMed  Google Scholar 

  21. Cherchi C, Gu AZ (2010) Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environ Sci Technol 44:8302

    Article  CAS  PubMed  Google Scholar 

  22. Kulacki KJ, Cardinale BJ (2012) Effects of nano-titanium dioxide on freshwater algal population dynamics. PLoS ONE 7:e47130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Binh CTT, Peterson CG, Tong T, Gray KA, Gaillard JF, Kelly JJ (2015) Comparing acute effects of a nano-TiO2 pigment on cosmopolitan freshwater phototrophic microbes using high-throughput screening. PLoS ONE 10(4):e0125613

    Article  PubMed Central  PubMed  Google Scholar 

  24. Cardinale BJ, Bier R, Kwan C (2012) Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae. J Nanoparticle Res 14:1

    Article  Google Scholar 

  25. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res 13:225, 8 pp

    Article  CAS  Google Scholar 

  26. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171:99

    Article  CAS  PubMed  Google Scholar 

  27. Kulacki KJ, Cardinale BJ, Keller AA, Bier R, Dickson H (2012) How do stream organisms respond to, and influence, the concentration of titanium dioxide nanoparticles? A mesocosm study with algae and herbivores. Environ Toxicol Chem 31:2414

    Article  CAS  PubMed  Google Scholar 

  28. Sander BC, Kalff J (1993) Factors controlling bacterial production in marine and freshwater sediments. Microb Ecol 26:79

    Article  CAS  PubMed  Google Scholar 

  29. Tank JL, Rosi-Marshall EJ, Baker MA, Hall RO (2008) Are rivers just big streams? A pulse method to quantify nitrogen demand in a large river. Ecology 89:2935

    Article  PubMed  Google Scholar 

  30. Boncagni NT, Otaegui JM, Warner E, Curran T, Ren J, de Cortalezzi F, Marta M (2009) Exchange of TiO2 nanoparticles between streams and streambeds. Environ Sci Technol 43:7699

    Article  CAS  PubMed  Google Scholar 

  31. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962

    Article  CAS  PubMed  Google Scholar 

  32. Cook AR (2014) Environmental drivers of leaf breakdown rate in an urban watershed. MS Thesis, Loyola University Chicago

  33. Gough HL, Stahl DA (2003) Optimization of direct cell counting in sediment. J Microbiol Methods 52:39

    Article  PubMed  Google Scholar 

  34. Hill B, Herlihy A, Kaufmann P (2002) Benthic microbial respiration in Appalachian Mountain, Piedmont, and coastal plains streams of the eastern USA. Freshw Biol 47:185

    Article  Google Scholar 

  35. Groffman P, Holland E, Myrold D, Robertson G, XiaoMing Z, Coleman D, Bledsoe C, Sollins P (1999) Denitrification. Standard Soil Methods for Long-Term Ecological Research 272

  36. Murray RE, Knowles R (1999) Chloramphenicol inhibition of denitrifying enzyme activity in two agricultural soils. Appl Environ Microbiol 65:3487

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Kepner R, Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58:603

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Boon N, Windt W, Verstraete W, Top EM (2002) Evaluation of nested PCR–DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol 39:101

    CAS  PubMed  Google Scholar 

  39. Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, Elshahed MS (2009) Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl Environ Microbiol 75:5227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237

    Article  Google Scholar 

  44. Shannon CE (2001) A mathematical theory of communication. Mob Comput Commun Rev 5:3

    Article  Google Scholar 

  45. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5:e1000352

    Article  PubMed Central  PubMed  Google Scholar 

  47. Pryor WA (1986) Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol 48:657

    Article  CAS  PubMed  Google Scholar 

  48. Gillan DC, Danis B, Pernet P, Joly G, Dubois P (2005) Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl Environ Microbiol 71:679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Drury B, Scott J, Rosi-Marshall EJ, Kelly JJ (2013) Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environ Sci Technol 47:8923

    CAS  PubMed  Google Scholar 

  50. Näslund J, Hedman JE, Agestrand C (2008) Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment. Aquat Toxicol 90:223

    Article  PubMed  Google Scholar 

  51. Rosi-Marshall EJ, Kincaid DW, Bechtold HA, Royer TV, Rojas M, Kelly JJ (2013) Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms. Ecol Appl 23:583

    Article  PubMed  Google Scholar 

  52. Ge Y, Priester JH, De Werfhorst V, Laurie C, Schimel JP, Holden PA (2013) Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities. Environ Sci Technol 47:14411

    Article  CAS  PubMed  Google Scholar 

  53. Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78:6749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659

    Article  CAS  PubMed  Google Scholar 

  55. Zheng X, Chen Y, Wu R (2011) Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environ Sci Technol 45:7284

    Article  CAS  PubMed  Google Scholar 

  56. Belt K, Hohn C, Gbakima A, Higgins J (2007) Identification of culturable stream water bacteria from urban, agricultural, and forested watersheds using 16S rRNA gene sequencing. J Water Health 5:395

    Article  CAS  PubMed  Google Scholar 

  57. Konstantinidis K, Isaacs N, Fett J, Simpson S, Long D, Marsh T (2003) Microbial diversity and resistance to copper in metal-contaminated lake sediment. Microb Ecol 45:191

    Article  CAS  PubMed  Google Scholar 

  58. Szabó G, Khayer B, Rusznyák A, Tátrai I, Dévai G, Márialigeti K, Borsodi AK (2011) Seasonal and spatial variability of sediment bacterial communities inhabiting the large shallow Lake Balaton. Hydrobiologia 663:217

    Article  Google Scholar 

  59. Cooper WJ, Zika RG (1983) Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. Science 220:711

    Article  CAS  PubMed  Google Scholar 

  60. Li G, Gray KA (2007) The solid–solid interface: explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem Phys 339:173

    Article  CAS  Google Scholar 

  61. Lin D, Ji J, Long Z, Yang K, Wu F (2012) The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. Water Res 46:4477

    Article  CAS  PubMed  Google Scholar 

  62. Wang L, Chin Y, Traina SJ (1997) Adsorption of (poly) maleic acid and an aquatic fulvic acid by geothite. Geochim Cosmochim Acta 61:5313

    Article  CAS  Google Scholar 

  63. Yoon TH, Johnson SB, Brown GE (2005) Adsorption of organic matter at mineral/water interfaces. IV. Adsorption of humic substances at boehmite/water interfaces and impact on boehmite dissolution. Langmuir 21:5002

    Article  CAS  PubMed  Google Scholar 

  64. Chen J, Xiu Z, Lowry GV, Alvarez PJ (2011) Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res 45:1995

    Article  CAS  PubMed  Google Scholar 

  65. Wu B, Huang R, Sahu M, Feng X, Biswas P, Tang YJ (2010) Bacterial responses to Cu-doped TiO2 nanoparticles. Sci Total Environ 408:1755

    Article  CAS  PubMed  Google Scholar 

  66. Joshi N, Ngwenya BT, French CE (2012) Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. J Hazard Mater 241:363

    Article  PubMed  Google Scholar 

  67. Rodrigues DF, Elimelech M (2010) Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. Environ Sci Technol 44:4583

    Article  CAS  PubMed  Google Scholar 

  68. Wu B, Wang Y, Lee Y, Horst A, Wang Z, Chen D, Sureshkumar R, Tang YJ (2010) Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environ Sci Technol 44:1484

    Article  CAS  PubMed  Google Scholar 

  69. Anderson TH, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393

    Article  Google Scholar 

  70. Drury B, Rosi-Marshall E, Kelly JJ (2013) Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Appl Environ Microbiol 79:1897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. American Society of Civil Engineers (2013) Report card for America’s infrastructure. http://www.infrastructurereportcard.org/

  72. United States Environmental Protection Agency. Office of Water (2002) The clean water and drinking water infrastructure gap analysis. DIANE Publishing

Download references

Acknowledgments

The work described in this study was performed with support from the National Science Foundation (Grant No. CBET-1067439 to JK and Grant No. CBET-1067751 to KG and J-FG) and support from the Illinois-Indiana Sea Grant (Agreement No. 2006-02560-15). We thank Timothy Hoellein for the assistance with the DEA assay and Bradley Drury for the assistance with artificial stream setup and operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Kelly.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

The supplementary material includes three figures (Figures S1, S2 and S3) that present data for bacterial cell numbers, respiration rates, and denitrification rates for both treatment and control streams. Treatment streams received a single addition of 1 mg l-1 nano-TiO2 (P25) on day 0 and control streams received no nano-TiO2 (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozaki, A., Adams, E., Binh, C.T.T. et al. One-Time Addition of Nano-TiO2 Triggers Short-Term Responses in Benthic Bacterial Communities in Artificial Streams. Microb Ecol 71, 266–275 (2016). https://doi.org/10.1007/s00248-015-0646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0646-z

Keywords

Navigation