Skip to main content

Advertisement

Log in

Abundance and Diversity of CO2-Assimilating Bacteria and Algae Within Red Agricultural Soils Are Modulated by Changing Management Practice

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Elucidating the biodiversity of CO2-assimilating bacterial and algal communities in soils is important for obtaining a mechanistic view of terrestrial carbon sinks operating at global scales. “Red” acidic soils (Orthic Acrisols) cover large geographic areas and are subject to a range of management practices, which may alter the balance between carbon dioxide production and assimilation through changes in microbial CO2-assimilating populations. Here, we determined the abundance and diversity of CO2-assimilating bacteria and algae in acidic soils using quantitative PCR and terminal restriction fragment length polymorphism (T-RFLP) of the cbbL gene, which encodes the key CO2 assimilation enzyme (ribulose-1,5-bisphosphate carboxylase/oxygenase) in the Calvin cycle. Within the framework of a long-term experiment (Taoyuan Agro-ecosystem, subtropical China), paddy rice fields were converted in 1995 to four alternative land management regimes: natural forest (NF), paddy rice (PR), maize crops (CL), and tea plantations (TP). In 2012 (17 years after land use transformation), we collected and analyzed the soils from fields under the original and converted land management regimes. Our results indicated that fields under the PR soil management system harbored the greatest abundance of cbbL copies (4.33 × 108 copies g−1 soil). More than a decade after converting PR soils to natural, rotation, and perennial management systems, a decline in both the diversity and abundance of cbbL-harboring bacteria and algae was recorded. The lowest abundance of bacteria (0.98 × 108 copies g−1 soil) and algae (0.23 × 106 copies g−1 soil) was observed for TP soils. When converting PR soil management to alternative management systems (i.e., NF, CL, and TP), soil edaphic factors (soil organic carbon and total nitrogen content) were the major determinants of bacterial autotrophic cbbL gene diversity. In contrast, soil phosphorus concentration was the major regulator of algal cbbL community composition. Our results provide new insights into the diversity, abundance, and modulation of organisms responsible for microbial autotrophic CO2 fixation in red acidic soils subjected to changing management regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang T, Zhao Q (1994) Rehabilitation and sustainable management of degraded agro-ecosystem in Southern China. In: Zhao Q (eds) Pedosphere. Nanjiang University Press

  2. Ge T, Nie Sa WJ, Shen J, Ha X, Tong C, Huang D, Hong Y, Iwasaki K (2011) Chemical properties, microbial biomass, and activity differ between soils of organic and conventional horticultural systems under greenhouse and open field management: a case study. J Soils Sediments 11:25–36

    Article  CAS  Google Scholar 

  3. O’Donnell AG, Young IM, Rushton SP, Shirley MD, Crawford JW (2007) Visualization, modelling and prediction in soil microbiology. Nat Rev Microbiol 5:689–699

    Article  PubMed  Google Scholar 

  4. Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437:349–355

    Article  CAS  PubMed  Google Scholar 

  5. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  6. Smith J, Paul E (1990) The significance of soil microbial biomass estimations. Soil Biochem 6:357–396

    CAS  Google Scholar 

  7. Yousuf B, Keshri J, Mishra A, Jha B (2012) Application of targeted metagenomics to explore abundance and diversity of CO2-fixing bacterial community using cbbL gene from the rhizosphere of Arachis hypogaea. Gene 506:18–24

    Article  CAS  PubMed  Google Scholar 

  8. Follett RF (2001) Soil management concepts and carbon sequestration in cropland soils. Soil Tillage Res 61:77–92

    Article  Google Scholar 

  9. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327

    Article  Google Scholar 

  10. Sombrero A, de Benito A (2010) Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil Tillage Res 107:64–70

    Article  Google Scholar 

  11. West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946

    Article  CAS  Google Scholar 

  12. Lal R (2011) Sequestering carbon in soils of agro-ecosystems. Food Policy 36:S33–S39

    Article  Google Scholar 

  13. Gonzalez-Chavez MCA, Aitkenhead-Peterson JA, Gentry TJ, Zuberer D, Hons F, Loeppert R (2010) Soil microbial community, C, N, and P responses to long-term tillage and crop rotation. Soil Tillage Res 106:285–293

    Article  Google Scholar 

  14. Ge T, Wu X, Chen X, Yuan H, Zou Z, Li B, Zhou P, Liu S, Tong C, Brookes P, Wu J (2013) Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils. Geochim Cosmochim Acta 113:70–78

    Article  CAS  Google Scholar 

  15. Savage DF, Afonso B, Chen AH, Silver PA (2010) Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327:1258–1261

    Article  CAS  PubMed  Google Scholar 

  16. Ge T, Yuan H, Zhu H, Wu X, Sa N, Liu C, Tong C, Wu J, Brookes P (2012) Biological carbon assimilation and dynamics in a flooded rice—soil system. Soil Biol Biochem 48:39–46

    Article  CAS  Google Scholar 

  17. Yuan H, Ge T, Wu X, Liu S, Tong C, Qin H, Wu M, Wei W, Wu J (2012) Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil. Appl Microbiol Biotechnol 95:1061–1071

    Article  CAS  PubMed  Google Scholar 

  18. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296

    Article  CAS  PubMed  Google Scholar 

  19. Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631

    Article  CAS  PubMed  Google Scholar 

  21. Watson GMF, Tabita FR (1997) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. Fems Microbiol Lett 146:13–22

    Article  CAS  PubMed  Google Scholar 

  22. Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4:241–244

    Article  CAS  Google Scholar 

  23. Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res 60:1–28

    Article  CAS  Google Scholar 

  24. Shively JM, English RS, Baker SH, Cannon GC (2001) Carbon cycling: the prokaryotic contribution. Curr Opin Microbiol 4:301–306

    Article  CAS  PubMed  Google Scholar 

  25. Kusian B, Bowien B (1997) Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. Fems Microbiol Rev 21:135–155

    Article  CAS  PubMed  Google Scholar 

  26. Selesi D, Schmid M, Hartmann A (2005) Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl Environ Microbiol 71:175–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Tolli J, King GM (2005) Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils. Appl Environ Microbiol 71:8411–8418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Elsaied H, Naganuma T (2001) Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. Appl Environ Microbiol 67:1751–1765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Alfreider A, Vogt C, Hoffmann D, Babel W (2003) Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from groundwater and aquifer microorganisms. Microb Ecol 45:317–328

    Article  CAS  PubMed  Google Scholar 

  30. Xiao K-Q, Bao P, Bao Q-L, Jia Y, Huang F-Y, Su J-Q, Zhu Y-G (2014) Quantitative analyses of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbbL) in typical paddy soils. Fems Microbiol Ecol 87:89–101

    Article  CAS  PubMed  Google Scholar 

  31. Wu J (2011) Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies. Eur J Soil Sci 62:29–34

    Article  CAS  Google Scholar 

  32. Sparks D, Page A, Helmke P, Loeppert R (1996) Salinity: electrical conductivity and total dissolved solids

  33. Page A, Miller R, Keeney D (1982) Total carbon, organic carbon, and organic matter. Methods Soil Anal Part 2:539–579

    Google Scholar 

  34. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Govt. Printing Office

  35. Chen Z, Luo X, Hu R, Wu M, Wu J, Wei W (2010) Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microb Ecol 60:850–861

    Article  CAS  PubMed  Google Scholar 

  36. Okano Y, Hristova KR, Leutenegger CM, Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008–1016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Yuan H, Ge T, Zou Z, Wu X, Liu S, Zhou P, Chen X, Brookes P, Wu J (2013) Effect of land use on the abundance and diversity of autotrophic bacteria as measured by ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit gene abundance in soils. Biol Fertil Soils 49:609–616

    Article  CAS  Google Scholar 

  38. Kitts CL (2001) Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2:17–25

    CAS  PubMed  Google Scholar 

  39. Kent AD, Smith DJ, Benson BJ, Triplett EW (2003) Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl Environ Microbiol 69:6768–6776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lukow T, Dunfield PF, Liesack W (2000) Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. Fems Microbiol Ecol 32:241–247

    Article  CAS  Google Scholar 

  41. Peng N, Wang K, Xie X, Hu S (2008) Effects of different utilization model on soil water redistributions, runoff and nutrition loss on red sloping lands. Res Soil Water Conserv 15:207–213

    Google Scholar 

  42. Arvidsson J, Westlin A, Sorensson F (2013) Working depth in non-inversion tillage-Effects on soil physical properties and crop yield in Swedish field experiments. Soil Tillage Res 126:259–266

    Article  Google Scholar 

  43. Yao H, He Z, Wilson MJ, Campbell CD (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb Ecol 40:223–237

    CAS  PubMed  Google Scholar 

  44. Paul JH, Alfreider A, Wawrik B (2000) Micro- and macrodiversity in rbcL sequences in ambient phytoplankton populations from the southeastern Gulf of Mexico. Mar Ecol Prog Ser 198:9–18

    Article  CAS  Google Scholar 

  45. Watkinson AR (1998) The role of the soil community in plant population dynamics. Trends Ecol Evol 13(5):171–172

    Article  CAS  PubMed  Google Scholar 

  46. Schröder P, Hartmann A (2003) New developments in rhizosphere research. J Soils Sediments 3(4):227–227

    Article  Google Scholar 

  47. Jia Y, Huang H, Zhong M, Wang F-H, Zhang L-M, Zhu Y-G (2013) Microbial arsenic methylation in soil and rice rhizosphere. Environ Sci Technol 47(7):3141–3148

    CAS  PubMed  Google Scholar 

  48. Xu HH, Tabita FR (1996) Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms. Appl Environ Microbiol 62:1913–1921

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Wu X, Ge T, Yuan H, Li B, Zhu H, Zhou P, Sui F, O’Donnell AG, Wu J (2014) Changes in bacterial CO2 fixation with depth in agricultural soils. Appl Microbiol Biotechnol 98:2309–2319

    Article  CAS  PubMed  Google Scholar 

  50. Hart KM, Kulakova AN, Allen CCR, Simpson AJ, Oppenheimer SF, Masoom H, Courtier-Murias D, Soong R, Kulakov LA, Flanagan PV, Murphy BT, Kelleher BP (2013) Tracking the fate of microbially sequestered carbon dioxide in soil organic matter. Environ Sci Technol 47:5128–5137

    Article  CAS  PubMed  Google Scholar 

  51. Lobban CS (1994) Seaweed ecology and physiology. Cambridge University Press

  52. Schnepf E, Elbrachter M (1992) Nutritional strategies in dinoflagellates-a review with emphasis on cell biological aspects. Eur J Protistol 28:3–24

    CAS  PubMed  Google Scholar 

  53. Cermeño P, Marañón E, Rodríguez J, Fernández E (2005) Large-sized phytoplankton sustain higher carbon-specific photosynthesis than smaller cells in a coastal eutrophic ecosystem. Mar Ecol Prog Ser 297:51–60

    Article  Google Scholar 

  54. Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  PubMed  Google Scholar 

  55. King GM, Weber CF (2007) Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol 5:107–118

    Article  CAS  PubMed  Google Scholar 

  56. Penacabriales JJ, Alexander M (1983) Growth of rhizobium in soil amended with organic-matter. Soil Sci Soc Am J 47:241–245

    Article  Google Scholar 

  57. Jenkins SN, Rushton SP, Lanyon CV, Whiteley AS, Waite IS, Brookes PC, Kemmitt S, Evershed RP, Oâ Donnell AG (2010) Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol Biochem 42:1624–1631

    Article  CAS  Google Scholar 

  58. Salles JF, van Veen JA, van Elsas JD (2004) Multivariate analyses of Burkholderia species in soil: effect of crop and land use history. Appl Environ Microbiol 70:4012–4020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Nanba K, King GM, Dunfield K (2004) Analysis of facultative lithotrophic distribution and diversity on volcanic deposits by use of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Appl Environ Microbiol 70:2245–2253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Kamjunke N, Herzsprung P, Neu TR (2015) Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams. Sci Total Environ 506:353–360

    Article  PubMed  Google Scholar 

  61. Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367

    Article  CAS  PubMed  Google Scholar 

  62. Heil CA, Revilla M, Glibert PM, Murasko S (2007) Nutrient quality drives differential phytoplankton community composition on the southwest Florida shelf. Limnol Oceanogr 52:1067–1078

    Article  CAS  Google Scholar 

  63. Pedersen MF, Borum J (1996) Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar Ecol Prog Ser 142:261–272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (41430860; 41271279; 41301275), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15020401), and the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists awarded to Prof. A. S. Whiteley (2013T2S0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tida Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Ge, T., Chen, X. et al. Abundance and Diversity of CO2-Assimilating Bacteria and Algae Within Red Agricultural Soils Are Modulated by Changing Management Practice. Microb Ecol 70, 971–980 (2015). https://doi.org/10.1007/s00248-015-0621-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0621-8

Keywords

Navigation