Skip to main content
Log in

Aggregation Factor as an Inhibitor of Bacterial Binding to Gut Mucosa

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Modern research in the area of probiotics is largely devoted to discovering factors that promote the adherence of probiotic candidates to host mucosal surfaces. The aim of the present study was to test the role of aggregation factor (AggL) and mucin-binding protein (MbpL) from Lactococcus sp. in adhesion to gastrointestinal mucosa. In vitro, ex vivo, and in vivo experiments in rats were used to assess the adhesive potential of these two proteins expressed in heterologous host Lactobacillus salivarius BGHO1. Although there was no influence of MbpL protein expression on BGHO1 adhesion to gut mucosa, expression of AggL had a negative effect on BGHO1 binding to ileal and colonic rat mucosa, as well as to human HT29-MTX cells and porcine gastric mucin in vitro. Because AggL did not decrease the adhesion of bacteria to intestinal fragments in ex vivo tests, where peristaltic simulation conditions were missing, we propose that intestinal motility could be a crucial force for eliminating aggregation-factor-bearing bacteria. Bacterial strains expressing aggregation factor could facilitate the removal of pathogens through the coaggregation mechanism, thus balancing gut microbial ecosystems in people affected by intestinal bacteria overgrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC (2013) The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediat Inflamm. doi:10.1155/2013/237921

    Google Scholar 

  2. Tannock GW (1988) Molecular genetics: a new tool for investigating the microbial ecology of the gastrointestinal tract? Microb Ecol 15:239–256

    Article  CAS  PubMed  Google Scholar 

  3. Goh YJ, Klaenhammer TR (2010) Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 76:5005–5012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Malik S, Petrova MI, Claes IJJ, Verhoeven TLA, Busschaert P, Vaneechoutte M, Lievens B, Lambrichts I, Siezen RJ, Balzarini J, Vanderleyden J, Lebeer S (2013) The high auto-aggregative and adhesive phenotype of the vaginal Lactobacillus plantarum strain CMPG5300 is sortase-dependent. Appl Environ Microbiol. doi:10.1128/AEM.00926-13

    PubMed Central  PubMed  Google Scholar 

  5. Tuo Y, Yu H, Ai L, Wu Z, Guo B, Chen W (2013) Aggregation and adhesion properties of 22 Lactobacillus strains. J Dairy Sci 96:4252–4257

    Article  CAS  PubMed  Google Scholar 

  6. Voltan S, Castagliuolo I, Elli M, Longo S, Brun P, D’Incà R, Porzionato A, Macchi V, Palù G, Sturniolo GC, Morelli L, Martines D (2007) Aggregating phenotype in Lactobacillus crispatus determines intestinal colonization and TLR2 and TLR4 modulation in murine colonic mucosa. Clin Vaccine Immunol 14:1138–1148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lukić J, Strahinić I, Jovčić B, Filipić B, Topisirović L, Kojić M, Begović J (2012) Different roles for lactococcal aggregation factor and mucin binding protein in adhesion to gastrointestinal mucosa. Appl Environ Microbiol 78:7993–8000

    Article  PubMed Central  PubMed  Google Scholar 

  8. Van den Abbeele P, Van de Wiele T, Verstraete W, Possemiers S (2011) The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. FEMS Microbiol Rev 35:681–704

    Article  PubMed  Google Scholar 

  9. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

  10. Van Tassell ML, Miller MJ (2011) Lactobacillus adhesion to mucus. Nutrients 3:613–636

    Article  PubMed Central  PubMed  Google Scholar 

  11. Du Y, He YX, Zhang ZY, Yang YH, Shi WW, Frolet C, Di Guilmi AM, Vernet T, Zhou CZ, Chen Y (2011) Crystal structure of the mucin-binding domain of Spr1345 from Streptococcus pneumoniae. J Struct Biol 174:252–257

    Article  CAS  PubMed  Google Scholar 

  12. Miyoshu A, Poquet I, Azevedo V, Commissaire J, Bermudez-Humaran L, Domakova E, Le Loir Y, Oliveira SC, Gruss A, Langella P (2002) Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol 68:3141–3146

    Article  Google Scholar 

  13. Xin KQ, Hoshino Y, Toda Y, Igimi S, Kojima Y, Jounai N, Ohba K, Kushiro A, Kiwaki M, Hamajima K, Klinman D, Okuda K (2003) Immunogenicity and protective efficacy of orally administered recombinant Lactococcus lactis expressing surface-bound HIV Env. Blood 102:223–228

    Article  CAS  PubMed  Google Scholar 

  14. Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74:4985–4996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jiménez E, Martín R, Maldonado A, Martín V, De Segura AG, Fernández L, Rodríguez JM (2010) Complete genome sequence of Lactobacillus salivarius CECT 5713, a probiotic strain isolated from human milk and infant feces. J Bacteriol 192:5266–5267

    Article  PubMed Central  PubMed  Google Scholar 

  16. Neville BA, O’Toole PW (2010) Probiotic properties of Lactobacillus salivarius and closely related Lactobacillus species. Future Microbiol 5:759–774

    Article  CAS  PubMed  Google Scholar 

  17. Walker DC, Aoyama K, Klaenhammer TR (1996) Electrotransformation of lactobacillus acidophilus group A1. FEMS Microbiol Lett 138:233–237

    Article  CAS  PubMed  Google Scholar 

  18. Sambrook J, Russell D (2006) Preparation of plasmid DNA by alkaline lysis with SDS: minipreparation. Cold Spring Harb Protocol. doi:10.1101/pdb.prot4084

    Google Scholar 

  19. Lee PY, Costumbrado J, Hsu CY, Kim YH (2012) Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp. doi:10.3791/3923

  20. De los Reyes-Gavilán CG, Limsowtin GKY, Tailliez P, Séchaud L, Accolas JPA (1992) Lactobacillus helveticus-specific DNA probe detects restriction fragment length polymorphisms in this species. Appl Environ Microbiol 58:3429–3432

    PubMed Central  Google Scholar 

  21. Jovcic B, Begovic J, Lozo J, Topisirovic L, Kojic M (2009) Dynamic of sodium dodecyl sulfate utilization and antibiotic susceptibility of strain Pseudomonas sp. ATCC19151. Arch Biol Sci 61:159--164

  22. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidium thiocyanate-phenol chloroform extraction: twenty-something years on. Nat Protoc 1:581–585

    Article  CAS  PubMed  Google Scholar 

  23. Ocaña VS, Bru E, de Ruiz Holgado AAP, Nader-Macias ME (1999) Surface characteristics of lactobacilli isolated from human vagina. J Gen Appl Microbiol 45:203–212

    Article  PubMed  Google Scholar 

  24. Muñoz-Provencio D, Llopis M, Antolin M, de Torres I, Guarner F, Pérez-Martinez G, Monedero V (2009) Adhesion properties of Lactobacillus casei strains to resected intestinal fragments and components of the extracellular matrix. Arch Microbiol 191:153–161

  25. Sánchez B, Fernández-García M, Margolles A, De los Reyes-Gavilán CG, Ruas-Madiedo P (2010) Technological and probiotic selection criteria of a bile-adapted Bifidobacterium animalis subsp. lactis strain. Int Dairy J 20:800–805

    Article  Google Scholar 

  26. Arthur JC, Gharaibeh RZ, Uronis JM, Perez-Chanona E, Sha W, Tomkovich S, Mühlbauer M, Fodor A, Jobin C (2013) VSL#3 probiotic modifies mucosal microbial composition but does not reduce colitis-associated colorectal cancer. Sci Rep 3:2868

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kojic M, Jovcic B, Strahinic I, Begovic J, Lozo J, Veljovic K, Topisirovic L (2011) Cloning and expression of a novel lactococcal aggregation factor from Lactococcus lactis subsp. lactis BGKP1. BMC Microbiol 11:265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Strahinic I, Busarcevic M, Pavlica D, Milasin J, Golic N, Topisirovic L (2007) Molecular and biochemical characterizations of human oral lactobacilli as putative probiotic candidates. Oral Microbiol Immunol 22:111–117

    Article  CAS  PubMed  Google Scholar 

  29. Lukjancenko O, Ussery DW, Wassenaar TM (2012) Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera. Microb Ecol 63:651–673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ (2011) Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–244

    Article  CAS  PubMed  Google Scholar 

  31. Boonaert CJP, Rouxhet PG (2000) Surface of lactic acid bacteria: relationship between chemical composition and physicochemical properties. Appl Environ Microbiol 66:2548–2554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ventura M, Jankovic I, Walker DC, Pridmore RD, Zink R (2002) Identification and characterization of novel surface proteins in Lactobacillus johnsonii and Lactobacillus gasseri. Appl Environ Microbiol 68:6172–6181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Reniero R, Cocconcelli P, Bottazzi V, Morelli L (1992) High frequency of conjugation in Lactobacillus mediated by an aggregation-promoting factor. J Gen Microbiol 138:763–768

    Article  CAS  Google Scholar 

  34. Rao JN, Wang JY (2010) Regulation of gastrointestinal mucosal growth. Morgan & Claypool Life Sciences, San Rafael (CA)

    Google Scholar 

  35. Dukowicz AC, Lacy BE, Levine GM (2007) Small intestinal bacterial overgrowth: a comprehensive review. J Gastroenterol Hepatol 3:112–122

    Google Scholar 

  36. Pozzoli C, Poli E (2012) Assessment of intestinal peristalsis in vitro. Curr Protoc Toxicol. doi:10.1002/0471140856.tx2111s54

    PubMed  Google Scholar 

  37. Haier J, Nicolson GL (2001) Tumor cell adhesion under hydrodynamic conditions of fluid flow. APMIS 109:241–262

    Article  CAS  PubMed  Google Scholar 

  38. John JJS, Schroen DJ, Cheung HT (1994) An adhesion assay using minimal shear force to remove nonadherent cells. J Immunol Methods 170:159–166

    Article  Google Scholar 

  39. Jankovic I, Ventura M, Meylan V, Rouvet M, Elli M, Zink R (2003) Contribution of aggregation-promoting factor to maintenance of cell shape in Lactobacillus gasseri 4B2. J Bacteriol 185:3288–3296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Van Pijkeren JP, Canchaya C, Ryan KR, Li Y, Claesson MJ, Sheil B, Steidler L, O’Mahony L, Fitzgerald GF, Van Sinderen D, O’Toole PW (2006) Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72:4143–4153

    Article  PubMed Central  PubMed  Google Scholar 

  41. Boekhorst J, Helmer Q, Kleerebezem M, Siezen R (2006) Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology 152:273–280

    Article  CAS  PubMed  Google Scholar 

  42. MacKenzie DA, Jeffers F, Parker ML, Vibet-Vallet A, Bongaerts RJ, Roos S, Walter J, Juge N (2010) Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiology 156:3368–3378

    Article  CAS  PubMed  Google Scholar 

  43. Von Ossowski I, Satokari E, Reunanen J, Lebeer S, De Keersmaecker ACJ, Vanderleyden J, de Vos WM, Palva A (2011) Functional characterization of a mucus specific LPXTG surface adhesion from probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol 77:4465–4472

    Article  Google Scholar 

  44. Pieper R, Janczyk P, Zeyner A, Smidt H, Guiard V, Bernhard Souffrant WB (2008) Ecophysiology of the developing total bacterial and Lactobacillus communities in the terminal small intestine of weaning piglets. Microb Ecol 56:474--483

  45. Dewhirst FE, Chien CC, Paster BJ, Ericson RL, Orcutt RP, Schauer DB, Fox JG (1999) Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl Environ Microbiol 65:3287–3292

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Sarma-Rupavtarm RB, Ge Z, Schauer DB, Fox JG, Polz MF (2004) Spatial distribution and stability of the eight microbial species of the altered Schaedler flora in the mouse gastrointestinal tract. Appl Environ Microbiol 70:2791–2800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. He X, Tian Y, Guo L, Ano T, Lux R, Zusman DR, Shi W (2010) In vitro communities derived from oral and gut microbial floras inhibit the growth of bacteria of foreign origins. Microb Ecol 60:665–676

    Article  PubMed Central  PubMed  Google Scholar 

  48. Hoffmann M, Rath E, Hölzlwimmer G, Quintanilla-Martinez L, Loach D, Tannock G, Haller D (2008) Lactobacillus reuteri 100-23 transiently activates intestinal epithelial cells of mice that have a complex microbiota during early stages of colonization. J Nutr 138:1684–1691

    CAS  PubMed  Google Scholar 

  49. Lukic J, Strahinic I, Milenkovic M, Golic N, Kojic M, Topisirovic L, Begovic J (2013) Interaction of Lactobacillus fermentum BGHI14 with rat colonic mucosa: implications for colitis induction. Appl Environ Microbiol 79:5735–5744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by The Ministry of Education, Science and Technological Development of the Republic of Serbia, grant No. 173019.

Conflicts of Interest

None declared

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Begovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukic, J., Strahinic, I., Milenkovic, M. et al. Aggregation Factor as an Inhibitor of Bacterial Binding to Gut Mucosa. Microb Ecol 68, 633–644 (2014). https://doi.org/10.1007/s00248-014-0426-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0426-1

Keywords

Navigation