Skip to main content

Advertisement

Log in

Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Maize is one of the most important crops worldwide, and in Brazil, the state of Paraná stands as its largest producer. The crop demands high inputs of N fertilizers, therefore all strategies aiming to optimize the grain production with lower inputs are very relevant. Endophytic bacteria have a high potential to increment maize grain yield by means of input via biological nitrogen fixation and/or plant growth promotion, in this last case increasing the absorption of water and nutrients by the plants. In this study, we established a collection of 217 endophytic bacteria, isolated from roots of four lineages and three hybrid genotypes of maize, and isolated in four different N-free culture media. Biochemical―comprising growth in different carbon sources, intrinsic tolerance to antibiotics, and biochemical tests for catalase, nitrate reductase, urease, and growth in N-free media in vitro―and genetic characterization by BOX-PCR revealed great variability among the isolates. Both commercial hybrids and homozygous lineages were broadly colonized by endophytes, and sequencing of the 16S rRNA gene revealed the presence of bacteria belonging to the genera Pantoea, Bacillus, Burkholderia, and Klebsiella. Qualitative differences in endophytic colonization were detected between lineages and hybrid genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhahg J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Araújo WL, Lima AOS, Azevedo JL, Marcon J, Sobral JK, Lacava PT (2002) Manual: isolamento de microrganismos endofíticos. ESALQ, Piracicaba, São Paulo

    Google Scholar 

  3. Assumpção LC, Lacava PT, Dias ACF, Azevedo JL, Menten JOM (2009) Diversidade e potencial biotecnológico da comunidade bacteriana endofítica de semente de soja. Pesq Agropec Bras 44:503–510

    Article  Google Scholar 

  4. Barretti PB, Souza RM, Pozza EA (2008) Bactérias endofíticas como agentes promotores do crescimento de plantas de tomateiro e de inibição in vitro de Ralstonia solanacearum. Ciênc Agrotec 32:731–739

    Article  Google Scholar 

  5. Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relations physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  6. Bouton JH, Albrecht SL, Zuberer DA (1985) Screening and selection of pearl millet for root associated bacterial nitrogen fixation. Field Crops Res 11:131–139

    Article  Google Scholar 

  7. Caballero-Mellado J, Carcano-Montiel M, Mascarua-Esparza MA (1992) Field inoculation of wheat (Triticum aestivum) with Azospirillum brasilense under temperate climate. Symbiosis 13:243–253

    Google Scholar 

  8. Coelho ASG (2000) BOOD v3.03: Avaliação de dendrogramas baseados em estimativas de distâncias/similaridades genéticas através do procedimento de bootstrap. UFG, Goiânia, Goiás, Brazil

    Google Scholar 

  9. Cruz LM, Souza EM, Weber OB, Baldani JI, Döbereiner J, Pedrosa FO (2001) 16S Ribosomal DNA characterization of nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril). Appl Environ Microbiol 67:2375–2379

    Article  CAS  Google Scholar 

  10. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  11. Döbereiner J, Andrade VO, Baldani VLD (1999) Protocolos para preparo de meios de cultura da Embrapa Agrobiologia. Embrapa CNPAB, Seropédica, Rio de Janeiro, Brazil

    Google Scholar 

  12. Garcia de Salamone IE, Döbereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by 15 N isotope dilution technique. Biol Fertil Soils 23:249–256

    Article  CAS  Google Scholar 

  13. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  14. Hall TA (2005) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. http://www.mbio.ncsu.edu/BioEdit/bioedit.html

  15. Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2006) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    Article  PubMed  Google Scholar 

  16. Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425

    Article  CAS  Google Scholar 

  17. Kapulnik Y, Okon Y, Henis Y (1987) Yield response of spring wheat cultivars (Triticum aestivum and T. turgidum) to inoculation with Azospirillum brasilense under field conditions. Biol Fertil Soils 4:27–35

    Google Scholar 

  18. Kaschuk G, Hungria M, Andrade DS, Campo RJ (2006) Genetic diversity of rhizobia associated with common bean grown under the no-tillage and conventional systems in South Brazil. Appl Soil Ecol 32:210–220

    Article  Google Scholar 

  19. Kennedy IR, Choudhury ATMA, Kecskés ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    Article  CAS  Google Scholar 

  20. Lacava PT, Andreote FD, Araújo WL, Azevedo JL (2006) Caracterização da comunidade bacteriana endofítica de citros por isolamento, PCR específico e DGGE. Pesq Agropec Bras 41:637–642

    Article  Google Scholar 

  21. Machado HB, Funayama S, Rigo LU, Pedrosa FO (1991) Excretion of ammonium by Azospirillum brasiliense mutants resistant to ethlenediamine. Can J Microbiol 37:549–553

    Article  CAS  Google Scholar 

  22. Marques ASA, Marchaison A, Gardan L, Samson R (2008) BOX-PCR-based identification of bacterial species belonging to Pseudomonas syringae–P. viridiflava group Gen. Mol Biol 31:106–115

    CAS  Google Scholar 

  23. Mendonça MM, Urquiaga SS, Reis VM (2006) Variabilidade genotípica de milho para acumulação de nitrogênio e contribuição da fixação biológica de nitrogênio. Pesq Agropec Bras 41:1681–1685

    Article  Google Scholar 

  24. Menna P, Barcellos FG, Hungria M (2009) Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of 16S rRNA, ITS, glnII, recA, atpD and dnaK genes. Int J Syst Evol Microbiol 59:2934–2950

    Article  PubMed  CAS  Google Scholar 

  25. Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN, Martínez-Romero E (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29:315–332

    Article  PubMed  CAS  Google Scholar 

  26. Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  27. Pedrosa FO, Yates MG (1984) Regulation of nitrogen fixation (nif) genes of Azospirillum brasiliense by nifA and ntrC (ginG) type genes. FEMS Microbiol Lett 55:95–101

    Article  Google Scholar 

  28. Pelczar MJ, Chan ECS, Krieg NR (1996) Microbiologia: conceitos e aplicações. Makron Books, São Paulo, São Paulo, Brazil

    Google Scholar 

  29. Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, Heuvel J, VanDen (eds) Microbiology of the phyllosphere. Cambridge, Cambridge University, Cambridge, pp 75–87

    Google Scholar 

  30. Procópio REL, Araújo WL, Jr M, Azevedo JL (2009) Characterization of an endophitic bacterial community associated with Eucapyptus spp. Gen Mol Res 8:1408–1422

    Article  Google Scholar 

  31. Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989

    Article  PubMed  CAS  Google Scholar 

  32. Rodrigues LS, Baldani VLD, Reis VM, Baldani JI (2006) Diversidade de bactérias diazotróficas endofíticas dos gêneros Herbaspirillum e Burkholderia na cultura do arroz inundado. Pesq Agropec Bras 41:275–284

    Article  Google Scholar 

  33. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  34. Rohlf FJ (1988) NTSYS-PC Numerical taxonomy and multivariate analysis system. Exeter, Exeter, U.K

    Google Scholar 

  35. Steele H, Streit WR (2005) Metagenomics: advances in ecology and biotechnology. FEMS Microbiol Lett 247:105–111

    Article  PubMed  CAS  Google Scholar 

  36. Torres AR, Araújo WL, Cursino L, Hungria M, Plotegher F, Mostasso FL, Azevedo JL (2008) Diversity of endophytic enterobacteria associated with different host plants. J Microbiol 46:373–379

    Article  PubMed  CAS  Google Scholar 

  37. Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    PubMed  CAS  Google Scholar 

  38. Versalovic J, Schneider M, de Bruijn F, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Method Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  39. Vincent JM (1970) Manual for the practical study of root-nodule bacteria. Blackwell Scientific, Oxford, U.K

    Google Scholar 

  40. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bact 173:697–703

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Professor Juarez Gabardo in UFPR for advice in the experiments and Lisandra Ferreira and for technical support. A special thanks to Dr. Francisco Terasawa Junior, from Semília–Genética e Melhoramento, for the genetic material. The study was partially supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), CNPq-Microrganismos Facilitadores (557746/2009-4), and CNPq-Repensa (562008/2010-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariangela Hungria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, A.C., Bassani, L.L., Adamoski, D. et al. Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol 65, 154–160 (2013). https://doi.org/10.1007/s00248-012-0104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0104-0

Keywords

Navigation