Skip to main content
Log in

Insights into the Phylogeny and Metabolic Potential of a Primary Tropical Peat Swamp Forest Microbial Community by Metagenomic Analysis

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A primary tropical peat swamp forest is a unique ecosystem characterized by long-term accumulation of plant biomass under high humidity and acidic water-logged conditions, and is regarded as an important terrestrial carbon sink in the biosphere. In this study, the microbial community in the surface peat layer in Pru Toh Daeng, a primary tropical peat swamp forest, was studied for its phylogenetic diversity and metabolic potential using direct shotgun pyrosequencing of environmental DNA, together with analysis of 16S rRNA gene library and key metabolic genes. The community was dominated by aerobic microbes together with a significant number of facultative and anaerobic microbial taxa. Acidobacteria and diverse Proteobacteria (mainly Alphaproteobacteria) constituted the major phylogenetic groups, with minor representation of archaea and eukaryotic microbes. Based on comparative pyrosequencing dataset analysis, the microbial community showed high metabolic versatility of plant polysaccharide decomposition. A variety of glycosyl hydrolases targeting lignocellulosic and starch-based polysaccharides from diverse bacterial phyla were annotated, originating mostly from Proteobacteria, and Acidobacteria together with Firmicutes, Bacteroidetes, Chlamydiae/Verrucomicrobia, and Actinobacteria, suggesting the key role of these microbes in plant biomass degradation. Pyrosequencing dataset annotation and direct mcrA gene analysis indicated the presence of methanogenic archaea clustering in the order Methanomicrobiales, suggesting the potential on partial carbon flux from biomass degradation through methanogenesis. The insights on the peat swamp microbial assemblage thus provide a valuable approach for further study on biogeochemical processes in this unique ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  2. Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737

    PubMed  CAS  Google Scholar 

  3. Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobacteria phylum sequences in uranium-contaminated sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116

    Article  PubMed  CAS  Google Scholar 

  4. Basiliko N, Yavitt JB, Dees PM, Merkel SM (2003) Methane biogeochemistry and methanogen communities in two northern peatland ecosystems, New York state. Geomicrobiol J 20:563–577

    Article  CAS  Google Scholar 

  5. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2008) GenBank. Nucleic Acids Res 36:D25–30

    Article  PubMed  CAS  Google Scholar 

  6. Béquin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  Google Scholar 

  7. Blodau C (2002) Carbon cycling in peatlands—a review of processes and controls. Environ Rev 10:111–124

    Article  CAS  Google Scholar 

  8. Bräuer SL, Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2006) Isolation of a novel acidophilic methanogen from an acidic peat bog. Nature 442:192–194

    Article  PubMed  Google Scholar 

  9. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–238

    Article  PubMed  CAS  Google Scholar 

  10. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  PubMed  CAS  Google Scholar 

  11. Dedysh SN (2002) Methanotrophic bacteria of acidic Sphagnun peat bogs. Microbiology 71:638–650

    Article  CAS  Google Scholar 

  12. Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W (2006) Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 72:2110–2117

    Article  PubMed  CAS  Google Scholar 

  13. DeLong EF (2005) Microbial community genomics in the ocean. Nat Rev Microbiol 3:459–469

    Article  PubMed  CAS  Google Scholar 

  14. Edwards RA, Rodriguez-Bitro B, Wegley L, Haynes M, Brietbart M, Peterson DM, Saar MO, Alexander S, Alexander EC Jr, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57

    Article  PubMed  Google Scholar 

  15. Garrity GM, Holt JG (2001) The road map to the manual. In: Boone DR, Castenholz RW, Garrity GM (eds) BERGEY’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 119–166

    Google Scholar 

  16. Garsia J-L, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6:205–226

    Article  Google Scholar 

  17. Hirano T, Jauhiainen J, Inoue N, Takahashi H (2008) Controls of the carbon balances of tropical peatlands. Ecosystems 12:873–887

    Article  Google Scholar 

  18. Horn MA, Matthies C, Küsel K, Schramm A, Drake HL (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69:74–83

    Article  PubMed  CAS  Google Scholar 

  19. Hugenholtz P, Tyson TW (2008) Microbiology: metagenomics. Nature 455:481–483

    Article  PubMed  CAS  Google Scholar 

  20. Huson D, Auch A, Qi J, Schuster S (2007) MEGAN analysis of metagenome data. Genome Res 17:377–386

    Article  PubMed  CAS  Google Scholar 

  21. Jackson CR, Liew KC, Yule CM (2008) Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Microb Ecol 57:402–412

    Article  PubMed  Google Scholar 

  22. Kanokratana P, Chanapan S, Pootanakit K, Eurwilaichitr L (2004) Diversity and abundance of bacteria and archaea in the Bor Khlueng Hot Spring in Thailand. J Basic Microbiol 44:430–444

    Article  PubMed  Google Scholar 

  23. Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099–7106

    Article  PubMed  CAS  Google Scholar 

  24. Kotsyurbenko OR, Chin KJ, Glagolev MV, Stubner S, Simankova MV, Nozhevnikova AN, Conrad R (2004) Acetoclastic and hydrogenotrophic methane production and methanogenic populations in acidic West Siberian peat bogs. Environ Microbiol 6:1159–1173

    Article  PubMed  CAS  Google Scholar 

  25. Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed  CAS  Google Scholar 

  26. Lu Y, Dirk R, Werner L, Ralf C (2006) Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol 8:1351–1360

    Article  PubMed  CAS  Google Scholar 

  27. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA gene in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530

    PubMed  CAS  Google Scholar 

  28. Maltby E, Immirzi P (1993) Carbon dynamics in peatlands and other wetland soils. Regional and global perspectives. Chemosphere 27:999–1023

    Article  CAS  Google Scholar 

  29. Martín HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He S, Salamov AA, Szeto E, Dalin E, Putnam NH, Shapiro HJ, Pangilinan JL, Rigoutsos I, Kyrpides NC, Blackall LL, McMahon KD, Hugenholtz P (2005) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263–1269

    Article  Google Scholar 

  30. Melling L, Hatano R, Goh KJ (2005) Methane fluxes from three ecosystems in tropical peatlands of Sarawak, Malaysia. Soil Biol Biochem 37:1445–1453

    Article  CAS  Google Scholar 

  31. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The Metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386

    Article  CAS  Google Scholar 

  32. Monzoorul Haque M, Ghosh TS, Komanduri D, Mande SS (2009) SOrt-ITEMS: sequence orthology based approach for improved taxonomic estimation of metagenomic sequences. Bioinformatics 25:1722–1730

    Article  PubMed  CAS  Google Scholar 

  33. Nercessian D, Upton M, Lloyd D, Edwards C (1999) Phylogenetic analysis of peat bog methanogen populations. FEMS Microbiol Lett 173:425–429

    Article  CAS  Google Scholar 

  34. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Rückert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702

    Article  PubMed  CAS  Google Scholar 

  35. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:132–152

    Article  Google Scholar 

  36. Quaiser A, Ochsenreiter T, Klenk HP, Kletzin A, Treusch AH, Meurer G, Eck J, Sensen CW, Schleper C (2002) First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol 4:603–611

    Article  PubMed  CAS  Google Scholar 

  37. Sait M, Davis KER, Janssen PH (2006) Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72:1852–1857

    Article  PubMed  CAS  Google Scholar 

  38. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  39. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  40. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA gene sequence analysis in the present definition in bacteriology. Inter J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  41. Sundh I, Nilsson M, Borga P (1997) Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fatty acid profiles. Appl Environ Microbiol 63:1476–1482

    PubMed  CAS  Google Scholar 

  42. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28

    Article  PubMed  CAS  Google Scholar 

  43. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  PubMed  CAS  Google Scholar 

  44. Uz I, Chauhan A, Ogram AV (2007) Cellulolytic, fermentative and methanogenic guilds in benthic periphyton mats from the Florida Everglades. FEMS Microbiol Ecol 61:337–347

    Article  PubMed  CAS  Google Scholar 

  45. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  46. von Mering C, Hugenholtz P, Tringe SG, Doerks T, Jensen LJ, Ward N, Bork P (2007) Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315:1126–1130

    Article  Google Scholar 

  47. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J et al (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056

    Article  PubMed  CAS  Google Scholar 

  48. Whitmore TC (1984) Tropical rainforests of the far East. Clarendon, Oxford, UK

    Google Scholar 

  49. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This project was supported by a research grant from the National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (BT-B-02-LG-BA-5106). Manuscript proofreading by Dr. Philip J. Shaw is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verawat Champreda.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

Neighbor-joining tree showing the phylogeny of bacterial 16S rRNA gene sequences from the Pru Toh Daeng peat swamp forest. Sequences were aligned (1,501 nt) with Clustal X and distances were calculated with the maximum likelihood model. Sequences named “PW” are those from this study. Bootstrap values (1,000 replicates) above 50% are shown. Bar, 10% sequence divergence. Aquifex pyrophillus was used as outgroup taxa. Acidobacteria sequences were grouped for simplicity. The potential new taxa are marked with an asterisk. (PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanokratana, P., Uengwetwanit, T., Rattanachomsri, U. et al. Insights into the Phylogeny and Metabolic Potential of a Primary Tropical Peat Swamp Forest Microbial Community by Metagenomic Analysis. Microb Ecol 61, 518–528 (2011). https://doi.org/10.1007/s00248-010-9766-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9766-7

Keywords

Navigation