Skip to main content
Log in

Functional and structural connectivity of the brain in very preterm babies: relationship with gestational age and body and brain growth

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Structural and functional changes of the brain have been reported in premature babies.

Objective

To evaluate the relationship of functional and structural connectivity with gestational age, body growth and brain maturation in very preterm babies.

Materials and methods

We studied 18 very preterm babies (gestational age: mean ± standard deviation, 29.7±1.7 weeks). We examined functional connectivity by multivariate pattern analysis of resting-state functional MRI data. We assessed structural connectivity by analysis of diffusion tensor imaging data and probabilistic tractography.

Results

The average functional connectivity of the medial orbitofrontal cortex with the rest of the brain was positively associated with gestational age (P<0.001). Fractional anisotropy of the right inferior fronto-occipital fasciculus was positively associated with head circumference at term-equivalent age. Structural connectivity of the inferior fronto-occipital fasciculus with the medial orbitofrontal cortex was positively associated with head circumference at term-equivalent age. Body weight at term-equivalent age was the only independent predictor of average structural connectivity of the medial orbitofrontal cortex with the rest of the brain (P=0.020).

Conclusion

Structural and functional connectivity of the medial orbitofrontal cortex with the rest of the brain depend on body growth and degree of prematurity, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ancel PY, Goffinet F, Group E-W et al (2015) Survival and morbidity of preterm children born at 22 through 34 weeks’ gestation in France in 2011: results of the EPIPAGE-2 cohort study. JAMA Pediatr 169:230–238

    Article  PubMed  Google Scholar 

  2. Anderson P, Doyle LW, Victorian Infant Collaborative Study Group (2003) Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 289:3264–3272

    Article  PubMed  Google Scholar 

  3. Moster D, Lie RT, Markestad T (2008) Long-term medical and social consequences of preterm birth. N Engl J Med 359:262–273

    Article  CAS  PubMed  Google Scholar 

  4. Shimony JS, Smyser CD, Wideman G et al (2016) Comparison of cortical folding measures for evaluation of developing human brain. Neuroimage 125:780–790

    Article  PubMed  Google Scholar 

  5. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tzarouchi LC, Astrakas LG, Zikou A et al (2009) Periventricular leukomalacia in preterm children: assessment of grey and white matter and cerebrospinal fluid changes by MRI. Pediatr Radiol 39:1327–1332

    Article  PubMed  Google Scholar 

  7. Tzarouchi LC, Xydis V, Zikou AK et al (2011) Diffuse periventricular leukomalacia in preterm children: assessment of grey matter changes by MRI. Pediatr Radiol 41:1545–1551

    Article  CAS  PubMed  Google Scholar 

  8. Tzarouchi LC, Drougia A, Zikou A et al (2014) Body growth and brain development in premature babies: an MRI study. Pediatr Radiol 44:297–304

    Article  PubMed  Google Scholar 

  9. Xydis V, Drougia A, Giapros V et al (2013) Brain growth in preterm infants is affected by the degree of growth restriction at birth. J Matern Fetal Neonatal Med 26:673–679

    Article  PubMed  Google Scholar 

  10. Rose SE, Hatzigeorgiou X, Strudwick MW et al (2008) Altered white matter diffusion anisotropy in normal and preterm infants at term-equivalent age. Magn Reson Med 60:761–767

    Article  PubMed  Google Scholar 

  11. Yung A, Poon G, Qiu DQ et al (2007) White matter volume and anisotropy in preterm children: a pilot study of neurocognitive correlates. Pediatr Res 61:732–736

    Article  PubMed  Google Scholar 

  12. Batalle D, Hughes EJ, Zhang H et al (2017) Early development of structural networks and the impact of prematurity on brain connectivity. Neuroimage 149:379–392

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smyser CD, Inder TE, Shimony JS et al (2010) Longitudinal analysis of neural network development in preterm infants. Cereb Cortex 20:2852–2862

    Article  PubMed  PubMed Central  Google Scholar 

  14. Doria V, Beckmann CF, Arichi T et al (2010) Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci U S A 107:20015–20020

    Article  PubMed  PubMed Central  Google Scholar 

  15. Smyser CD, Wheelock MD, Limbrick DD Jr, Neil JJ (2018) Neonatal brain injury and aberrant connectivity. Neuroimage 185:609–623

    Article  PubMed  Google Scholar 

  16. Howson C, Lawn J, Kinney M eds (2012) Born too soon: the global action report on preterm birth. World Health Organization, Geneva

  17. Winkler AM, Ridgway GR, Webster MA et al (2014) Permutation inference for the general linear model. Neuroimage 92:381–397

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stalnaker TA, Cooch NK, Schoenbaum G (2015) What the orbitofrontal cortex does not do. Nat Neurosci 18:620–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ganella EP, Burnett A, Cheong J et al (2015) Abnormalities in orbitofrontal cortex gyrification and mental health outcomes in adolescents born extremely preterm and/or at an extremely low birth weight. Hum Brain Mapp 36:1138–1150

    Article  PubMed  Google Scholar 

  20. Kwon SH, Scheinost D, Lacadie C et al (2014) GABA, resting-state connectivity and the developing brain. Neonatology 106:149–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gourley SL, Zimmermann KS, Allen AG, Taylor JR (2016) The medial orbitofrontal cortex regulates sensitivity to outcome value. J Neurosci 36:4600–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raybaud C, Ahmad T, Rastegar N et al (2013) The premature brain: developmental and lesional anatomy. Neuroradiology 55:23–40

    Article  PubMed  Google Scholar 

  23. Wang DD, Kriegstein AR (2009) Defining the role of GABA in cortical development. J Physiol 587:1873–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kostovic I, Jovanov-Milosevic N (2006) The development of cerebral connections during the first 20-45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422

    Article  PubMed  Google Scholar 

  25. Keunen K, Counsell SJ, Benders M (2017) The emergence of functional architecture during early brain development. Neuroimage 160:2–14

    Article  PubMed  Google Scholar 

  26. Giapros VI, Schiza V, Challa AS et al (2012) Serum insulin-like growth factor I (IGF-I), IGF-binding proteins-1 and -3, and postnatal growth of late preterm infants. Horm Metab Res 44:845–850

    Article  CAS  PubMed  Google Scholar 

  27. Cheong JL, Hunt RW, Anderson PJ et al (2008) Head growth in preterm infants: correlation with magnetic resonance imaging and neurodevelopmental outcome. Pediatrics 121:e1534–e1540

    Article  PubMed  Google Scholar 

  28. Mitter C, Prayer D, Brugger PC et al (2015) In vivo tractography of fetal association fibers. PLoS One 10:e0119536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Uddin LQ (2013) Complex relationships between structural and functional brain connectivity. Trends Cogn Sci 17:600–602

    Article  PubMed  Google Scholar 

  30. Ball G, Aljabar P, Arichi T et al (2016) Machine-learning to characterise neonatal functional connectivity in the preterm brain. Neuroimage 124:267–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smyser CD, Neil JJ (2015) Use of resting-state functional MRI to study brain development and injury in neonates. Semin Perinatol 39:130–140

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mongerson CRL, Jennings RW, Borsook D et al (2017) Resting-state functional connectivity in the infant brain: methods, pitfalls, and potentiality. Front Pediatr 5:159

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria I. Argyropoulou.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouka, V., Drougia, A., Xydis, V.G. et al. Functional and structural connectivity of the brain in very preterm babies: relationship with gestational age and body and brain growth. Pediatr Radiol 49, 1078–1084 (2019). https://doi.org/10.1007/s00247-019-04412-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-019-04412-6

Keywords

Navigation