Skip to main content

Advertisement

Log in

Radiographic features of the skeleton in disorders of post-squalene cholesterol biosynthesis

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Disorders of post-squalene cholesterol biosynthesis are inborn errors of metabolism characterised by multiple congenital abnormalities, including significant skeletal involvement. The most frequent and best-characterised example is the Smith–Lemli–Opitz syndrome. Nine other disorders are known, namely autosomal-recessive Antley–Bixler syndrome, Greenberg dysplasia, X-linked dominant chondrodysplasia punctata, X-linked recessive male emopamil-binding protein deficiency, CHILD syndrome, CK syndrome, sterol C4 methyloxidase-like deficiency, desmosterolosis and lathosterolosis. This study provides an overview of the radiologic features observed in these diseases. A common pattern of limb abnormalities is recognisable, including polydactyly, which is typically post-axial and rarely interdigital and can involve all four limbs, and syndactyly of the toes. Chondrodysplasia punctata is specifically associated with a subgroup of disorders of cholesterol biosynthesis (Greenberg dysplasia, CHILD syndrome, X-linked dominant chondrodysplasia punctata, male emopamil-binding protein deficiency). The possible occurrence of epiphyseal stippling in the Smith–Lemli–Opitz syndrome, initially reported, does not appear to be confirmed. Stippling is also associated with other congenital disorders such as chromosomal abnormalities, brachytelephalangic chondrodysplasia punctata (X-linked recessive chondrodysplasia punctata, disruptions of vitamin K metabolism, maternal autoimmune diseases), rhizomelic chondrodysplasia punctata (peroxisomal disorders) and lysosomal storage disorders. In the differential diagnosis of epiphyseal stippling, a moth-eaten appearance of bones, asymmetry, or presence of a common pattern of limb abnormalities indicate inborn errors of cholesterol biosynthesis. We highlight the specific differentiating radiologic features of disorders of post-squalene cholesterol biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Porter FD, Herman GE (2011) Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 52:6–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Offiah AC, Mansour S, Jeffrey I et al (2003) Greenberg dysplasia (HEM) and lethal X linked dominant Conradi–Hunermann chondrodysplasia punctata (CDPX2): presentation of two cases with overlapping phenotype. J Med Genet 40:e129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Horn LC, Faber R, Meiner A et al (2000) Greenberg dysplasia: first reported case with additional non-skeletal malformations and without consanguinity. Prenat Diagn 20:1008–1011

    Article  CAS  PubMed  Google Scholar 

  4. Konstantinidou A, Karadimas C, Waterham HR et al (2008) Pathologic, radiographic and molecular findings in three fetuses diagnosed with HEM/Greenberg skeletal dysplasia. Prenat Diagn 28:309–312

    Article  CAS  PubMed  Google Scholar 

  5. Trajkovski Z, Vrcakovski M, Saveski J et al (2002) Greenberg dysplasia (hydrops-ectopic calcification-moth-eaten skeletal dysplasia): prenatal ultrasound diagnosis and review of literature. Am J Med Genet 111:415–419

    Article  PubMed  Google Scholar 

  6. Wassif CA, Brownson KE, Sterner AL et al (2007) HEM dysplasia and ichthyosis are likely laminopathies and not due to 3beta-hydroxysterol Delta14-reductase deficiency. Hum Molec Genet 16:1176–1187

    Article  CAS  PubMed  Google Scholar 

  7. Waterham HR, Koster J, Mooyer P et al (2003) Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3 beta-hydroxysterol delta 14-reductase deficiency due to mutations in the lamin B receptor gene. Am J Hum Genet 72:1013–1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hoffmann K, Dreger CK, Olins AL et al (2002) Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly). Nat Genet 31:410–414

    CAS  PubMed  Google Scholar 

  9. Oosterwijk JC, Mansour S, van Noort G et al (2003) Congenital abnormalities reported in Pelger-Huet homozygosity as compared to Greenberg/HEM dysplasia: highly variable expression of allelic phenotypes. J Med Genet 40:937–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Borovik L, Modaff P, Waterham HR et al (2013) Pelger-huet anomaly and a mild skeletal phenotype secondary to mutations in LBR. Am J Med Genet A 161:2066–2073

    Article  CAS  Google Scholar 

  11. Clayton P, Fischer B, Mann A et al (2010) Mutations causing Greenberg dysplasia but not Pelger anomaly uncouple enzymatic from structural functions of a nuclear membrane protein. Nucleus 1:354–366

    Article  PubMed Central  PubMed  Google Scholar 

  12. Chitayat D, Gruber H, Mullen BJ et al (1993) Hydrops-ectopic calcification-moth-eaten skeletal dysplasia (Greenberg dysplasia): prenatal diagnosis and further delineation of a rare genetic disorder. Am J Med Genet 47:272–277

    Article  CAS  PubMed  Google Scholar 

  13. Bouvier R, Cordier M, Loget P et al (2008) Maladies métaboliques. In: Pathologie fœtale et placentaire pratique. Sauramps Médical, Montpellier, France, pp 465–484

  14. Hall CM, Offiah A, Forzano F et al (2012) Fetal and perinatal skeletal dysplasias: an atlas of multimodality imaging. Radcliffe Publishing Ltd., London, UK

    Google Scholar 

  15. Derry JM, Gormally E, Means GD et al (1999) Mutations in a delta 8-delta 7 sterol isomerase in the tattered mouse and X-linked dominant chondrodysplasia punctata. Nat Genet 22:286–290

    Article  CAS  PubMed  Google Scholar 

  16. Braverman N, Lin P, Moebius FF et al (1999) Mutations in the gene encoding 3 beta-hydroxysteroid-delta 8, delta 7-isomerase cause X-linked dominant Conradi-Hunermann syndrome. Nat Genet 22:291–294

    Article  CAS  PubMed  Google Scholar 

  17. Tysoe C, Law CJ, Caswell R et al (2008) Prenatal testing for a novel EBP missense mutation causing X-linked dominant chondrodysplasia punctata. Prenat Diagn 28:384–388

    Article  CAS  PubMed  Google Scholar 

  18. Whittock NV, Izatt L, Simpson-Dent SL et al (2003) Molecular prenatal diagnosis in a case of an X-linked dominant chondrodysplasia punctata. Prenat Diagn 23:701–704

    Article  CAS  PubMed  Google Scholar 

  19. Kelley RI, Wilcox WG, Smith M et al (1999) Abnormal sterol metabolism in patients with Conradi–Hunermann–Happle syndrome and sporadic lethal chondrodysplasia punctata. Am J Med Genet 83:213–219

    Article  CAS  PubMed  Google Scholar 

  20. Akiyama M, Sakai K, Hayasaka K et al (2009) Conradi–Hunermann–Happle syndrome with abnormal lamellar granule contents. Br J Dermatol 160:1335–1337

    Article  CAS  PubMed  Google Scholar 

  21. Umranikar S, Glanc P, Unger S et al (2006) X-linked dominant chondrodysplasia punctata: prenatal diagnosis and autopsy findings. Prenat Diagn 26:1235–1240

    Article  PubMed  Google Scholar 

  22. DiPreta EA, Smith KJ, Skelton H (2000) Cholesterol metabolism defect associated with Conradi–Hunerman–Happle [stet] syndrome. Int J Dermatol 39:846–850

    Article  CAS  PubMed  Google Scholar 

  23. Steijlen PM, van Geel M, Vreeburg M et al (2007) Novel EBP gene mutations in Conradi–Hunermann–Happle syndrome. Br J Dermatol 157:1225–1229

    Article  CAS  PubMed  Google Scholar 

  24. Herman GE, Kelley RI, Pureza V et al (2002) Characterization of mutations in 22 females with X-linked dominant chondrodysplasia punctata (Happle syndrome). Genet Med 4:434–438

    Article  CAS  PubMed  Google Scholar 

  25. Has C, Bruckner-Tuderman L, Muller D et al (2000) The Conradi–Hunermann–Happle syndrome (CDPX2) and emopamil binding protein: novel mutations, and somatic and gonadal mosaicism. Hum Mol Genet 9:1951–1955

    Article  CAS  PubMed  Google Scholar 

  26. Rakheja D, Read CP, Hull D et al (2007) A severely affected female infant with X-linked dominant chondrodysplasia punctata: a case report and a brief review of the literature. Pediatr Dev Pathol 10:142–148

    Article  PubMed  Google Scholar 

  27. Whittock NV, Izatt L, Mann A et al (2003) Novel mutations in X-linked dominant chondrodysplasia punctata (CDPX2). J Invest Dermatol 121:939–942

    Article  PubMed  Google Scholar 

  28. Hoang MP, Carder KR, Pandya AG et al (2004) Ichthyosis and keratotic follicular plugs containing dystrophic calcification in newborns: distinctive histopathologic features of X-linked dominant chondrodysplasia punctata (Conradi–Hunermann–Happle syndrome). Am J Dermatopathol 26:53–58

    Article  PubMed  Google Scholar 

  29. Shirahama S, Miyahara A, Kitoh H et al (2003) Skewed X-chromosome inactivation causes intra-familial phenotypic variation of an EBP mutation in a family with X-linked dominant chondrodysplasia punctata. Hum Genet 112:78–83

    Article  PubMed  Google Scholar 

  30. Grange DK, Kratz LE, Braverman NE et al (2000) CHILD syndrome caused by deficiency of 3beta-hydroxysteroid-delta8, delta7-isomerase. Am J Med Genet 90:328–335

    Article  CAS  PubMed  Google Scholar 

  31. Happle R, Konig A, Grzeschik KH (2000) Behold the CHILD, it’s only one: CHILD syndrome is not caused by deficiency of 3 beta-hydroxysteroid-Delta 8, Delta 7-isomerase. Am J Med Genet 94:341–343

    Article  CAS  PubMed  Google Scholar 

  32. Ausavarat S, Tanpaiboon P, Tongkobpetch S et al (2008) Two novel EBP mutations in Conradi–Hunermann–Happle syndrome. Eur J Dermatol 18:391–393

    CAS  PubMed  Google Scholar 

  33. Hellenbroich Y, Grzeschik KH, Krapp M et al (2007) Reduced penetrance in a family with X-linked dominant chondrodysplasia punctata. Eur J Med Gen 50:392–398

    Article  Google Scholar 

  34. Ikegawa S, Ohashi H, Ogata T et al (2000) Novel and recurrent EBP mutations in X-linked dominant chondrodysplasia punctata. Am J Med Genet 94:300–305

    Article  CAS  PubMed  Google Scholar 

  35. Aughton DJ, Kelley RI, Metzenberg A et al (2003) X-linked dominant chondrodysplasia punctata (CDPX2) caused by single gene mosaicism in a male. Am J Med Genet A 116A:255–260

    Article  PubMed  Google Scholar 

  36. Arnold AW, Bruckner-Tuderman L, Has C et al (2012) Conradi–Hunermann–Happle syndrome in males vs. MEND syndrome (male EBP disorder with neurological defects). Br J Dermatol 166:1309–1313

    Article  CAS  PubMed  Google Scholar 

  37. Sutphen R, Amar MJ, Kousseff BG et al (1995) XXY male with X-linked dominant chondrodysplasia punctata (Happle syndrome). Am J Med Genet 57:489–492

    Article  CAS  PubMed  Google Scholar 

  38. Furtado LV, Bayrak-Toydemir P, Hulinsky B et al (2010) A novel X-linked multiple congenital anomaly syndrome associated with an EBP mutation. Am J Med Genet A 152A:2838–2844

    Article  CAS  PubMed  Google Scholar 

  39. Milunsky JM, Maher TA, Metzenberg AB (2003) Molecular, biochemical, and phenotypic analysis of a hemizygous male with a severe atypical phenotype for X-linked dominant Conradi–Hunermann–Happle syndrome and a mutation in EBP. Am J Med Genet A 116:249–254

    Article  Google Scholar 

  40. Herman GE, Kratz L (2012) Disorders of sterol synthesis: beyond Smith–Lemli–Opitz syndrome. Am J Med Genet C: Semin Med Genet 160C:301–321

    Article  Google Scholar 

  41. Happle R (2011) A novel X-linked phenotype caused by hypomorphic EBP mutations. Am J Med Genet A 155:1770–1771

    Article  Google Scholar 

  42. Kelley RI, Kratz LE, Glaser RL et al (2002) Abnormal sterol metabolism in a patient with Antley–Bixler syndrome and ambiguous genitalia. Am J Med Genet 110:95–102

    Article  PubMed  Google Scholar 

  43. Fluck CE, Tajima T, Pandey AV et al (2004) Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley–Bixler syndrome. Nat Genet 36:228–230

    Article  PubMed  Google Scholar 

  44. Konig A, Happle R, Bornholdt D et al (2000) Mutations in the NSDHL gene, encoding a 3beta-hydroxysteroid dehydrogenase, cause CHILD syndrome. Am J Med Genet 90:339–346

    Article  CAS  PubMed  Google Scholar 

  45. Bornholdt D, Konig A, Happle R et al (2005) Mutational spectrum of NSDHL in CHILD syndrome. J Med Genet 42:e17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ishibashi M, Matsuda F, Oka H et al (2006) Abnormal lamellar granules in a case of CHILD syndrome. J Cutan Pathol 33:447–453

    Article  PubMed  Google Scholar 

  47. Happle R (2010) The group of epidermal nevus syndromes part I. Well defined phenotypes. J Am Acad Dermatol 63:1–22

    Article  PubMed  Google Scholar 

  48. McLarren KW, Severson TM, du Souich C et al (2010) Hypomorphic temperature-sensitive alleles of NSDHL cause CK syndrome. Am J Hum Genet 87:905–914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Du Souich C, Chou A, Yin J et al (2009) Characterization of a new X-linked mental retardation syndrome with microcephaly, cortical malformation, and thin habitus. Am J Med Genet A 149:2469–2478

    Article  Google Scholar 

  50. Tarpey PS, Smith R, Pleasance E et al (2009) A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet 41:535–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. He M, Kratz LE, Michel JJ et al (2011) Mutations in the human SC4MOL gene encoding a methyl sterol oxidase cause psoriasiform dermatitis, microcephaly, and developmental delay. J Clin Invest 121:976–984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Rossi M, D’Armiento M, Parisi I et al (2007) Clinical phenotype of lathosterolosis. Am J Med Genet A 143:2371–2381

    Article  Google Scholar 

  53. Kelley RI, Hennekam RC (2000) The Smith–Lemli–Opitz syndrome. J Med Genet 37:321–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Ryan AK, Bartlett K, Clayton P et al (1998) Smith–Lemli–Opitz syndrome: a variable clinical and biochemical phenotype. J Med Genet 35:558–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Quelin C, Loget P, Verloes A et al (2012) Phenotypic spectrum of fetal Smith–Lemli–Opitz syndrome. Eur J Med Genet 55:81–90

    Article  PubMed  Google Scholar 

  56. De Jong G, Kirby PA, Muller LM (1998) RSH (Smith–Lemli–Opitz) syndrome: ‘severe’ phenotype with ectrodactyly. Am J Med Genet 75:283–287

    Article  PubMed  Google Scholar 

  57. Warman ML, Cormier-Daire V, Hall C et al (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 155:943–968

    Article  CAS  PubMed Central  Google Scholar 

  58. Wallace M, Zori RT, Alley T et al (1994) Smith–Lemli–Opitz syndrome in a female with a de novo, balanced translocation involving 7q32: probable disruption of an SLOS gene. Am J Med Genet 50:368–374

    Article  CAS  PubMed  Google Scholar 

  59. Nowaczyk MJ (2011) Epiphyseal stippling is not a feature of 7-dehydrocholesterol reductase deficiency (Smith–Lemli–Opitz syndrome). Am J Med Genet A 155:940–941

    Article  CAS  Google Scholar 

  60. Brunetti-Pierri N, Corso G, Rossi M et al (2002) Lathosterolosis, a novel multiple-malformation/mental retardation syndrome due to deficiency of 3beta-hydroxysteroid-delta5-desaturase. Am J Hum Genet 71:952–958

    Article  PubMed Central  PubMed  Google Scholar 

  61. Rossi M, Vajro P, Iorio R et al (2005) Characterization of liver involvement in defects of cholesterol biosynthesis: long-term follow-up and review. Am J Med Genet A 132:144–151

    Article  Google Scholar 

  62. Parnes S, Hunter AG, Jimenez C et al (1990) Apparent Smith–Lemli–Opitz syndrome in a child with a previously undescribed form of mucolipidosis not involving the neurons. Am J Med Genet 35:397–405

    Article  CAS  PubMed  Google Scholar 

  63. Krakowiak PA, Wassif CA, Kratz L et al (2003) Lathosterolosis: an inborn error of human and murine cholesterol synthesis due to lathosterol 5-desaturase deficiency. Hum Mol Genet 12:1631–1641

    Article  CAS  PubMed  Google Scholar 

  64. Ho AC, Fung CW, Siu TS et al (2014) Lathosterolosis: a disorder of cholesterol biosynthesis resembling Smith–Lemli–Opitz syndrome. JIMD Rep 12:129–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Schaaf CP, Koster J, Katsonis P et al (2011) Desmosterolosis-phenotypic and molecular characterization of a third case and review of the literature. Am J Med Genet A 155:1597–1604

    Article  CAS  Google Scholar 

  66. Andersson HC, Kratz L, Kelley R (2002) Desmosterolosis presenting with multiple congenital anomalies and profound developmental delay. Am J Med Genet 113:315–319

    Article  PubMed  Google Scholar 

  67. Waterham HR, Koster J, Romeijn GJ et al (2001) Mutations in the 3beta-hydroxysterol Delta24-reductase gene cause desmosterolosis, an autosomal recessive disorder of cholesterol biosynthesis. Am J Hum Genet 69:685–694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. FitzPatrick DR, Keeling JW, Evans MJ et al (1998) Clinical phenotype of desmosterolosis. Am J Med Genet 75:145–152

    Article  CAS  PubMed  Google Scholar 

  69. Clayton P, Mills K, Keeling J et al (1996) Desmosterolosis: a new inborn error of cholesterol biosynthesis. Lancet 348:404

    Article  CAS  PubMed  Google Scholar 

  70. Villavicencio EH, Walterhouse DO, Iannaccone PM (2000) The sonic hedgehog-patched-gli pathway in human development and disease. Am J Hum Genet 67:1047–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Irving MD, Chitty LS, Mansour S et al (2008) Chondrodysplasia punctata: a clinical diagnostic and radiological review. Clin Dysmorphol 17:229–241

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaka C. Offiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, M., Hall, C.M., Bouvier, R. et al. Radiographic features of the skeleton in disorders of post-squalene cholesterol biosynthesis. Pediatr Radiol 45, 965–976 (2015). https://doi.org/10.1007/s00247-014-3257-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-014-3257-9

Keywords

Navigation