Skip to main content
Log in

On the Controllability of a Free-Boundary Problem for 1D Heat Equation with Local and Nonlocal Nonlinearities

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper deals with the analysis of the internal control of a free-boundary problem for the 1D heat equation with local and nonlocal nonlinearities. We prove a local null controllability result with distributed controls, locally suported in space. The proof is based on Schauder’s fixed point theorem combined with some appropriate specific estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alabau-Boussouira, F., Cannarsa, P., Fragnelli, G.: Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 2, 161–204 (2006)

    Article  MATH  Google Scholar 

  2. Aronson, D.G.: Some properties of the interface for a gas flow in porous media , In: Fasano, A., Primicerio, M. (eds.) Free Boundary Problems: Theory and Applications, Research Notes Math., No. 78, vol. I, Pitman, London (1983)

  3. Barbu, V.: Exact controllability of the superlinear heat equations. Appl. Math. Optim. 42, 73–89 (2000)

    Article  MATH  Google Scholar 

  4. Cannarsa, P., Fragnelli, G.: Null controllability of semilinear degenerate parabolic equations in bounded domains. Electron. J. Differ. Equ. 136, 1–20 (2006)

    MATH  Google Scholar 

  5. Cannarsa, P., Fragnelli, G., Rocchetti, D.: Null controllability of degenerate parabolic operators with drift. Netw. Heterog. Med. 2, 695–715 (2007)

    Article  MATH  Google Scholar 

  6. Cannarsa, P., Martinez, P., Vancostenoble, J.: Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control. Optim. 47, 1–19 (2008)

    Article  MATH  Google Scholar 

  7. Cannarsa, P., Martinez, P., Vancostenoble, J.: Null controllability of degenerate heat equations. Adv. Differ. Equ. 10, 153–190 (2005)

    MATH  Google Scholar 

  8. Cannarsa, P., Martinez, P., Vancostenoble, J.: Persistent regional null controllability for a class of degenerate parabolic equations. Commun. Pure Appl. Anal. 3, 607–635 (2004)

    Article  MATH  Google Scholar 

  9. Chipot, M., Valente, V., Caffarelli, G.: Remarks on a nonlocal problem involving the Dirichlet energy. Rend. Semin. Mat. Univ. Padova 110, 199–220 (2003)

    MATH  Google Scholar 

  10. Demarque, R., Límaco, J., Viana, L.: Local null controllability for degenerate parabolic equations with nonlocal term. Nonlinear Anal. 43, 523–547 (2018)

    Article  MATH  Google Scholar 

  11. De Menezes, S.B., Límaco, J., Medeiros, L.A.: Remarks on null controllability for semilinear heat equation in moving domains. Eletron. J. Qual. Theory Differ. Equ. 16, 1–32 (2003)

    MATH  Google Scholar 

  12. Doubova, A., Fernández-Cara, E.: Some control results for simplified one-dimensional of fluid-solid interaction. Math. Models Methods Appl. Sci. 15(5), 783–824 (2005)

    Article  MATH  Google Scholar 

  13. Doubova, A., Fernández-Cara, E., González-Burgos, M., Zuazua, E.: On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control. Optim. 41(3), 798–819 (2002)

    Article  MATH  Google Scholar 

  14. Fabre, C., Puel, J.P., Zuazua, E.: Approximate controllability of the semilinear heat equation. Proc. R. Soc. Edinb. Sect. A 125, 31–61 (1995)

    Article  MATH  Google Scholar 

  15. Fasano, A.: Mathematical models of some diffusive process with free boundaries , In: MAT, Series A: Mathematical Conferences, Seminars and Papers, 11, Universidad Austral, Rosario (2005)

  16. Fernández-Cara, E., Guerrero, S.: Global Carleman Inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45(4), 1395–1446 (2006)

    Article  MATH  Google Scholar 

  17. Fernández-Cara, E., Límaco, J., Hernández, F.: Local Null Controllability of a 1D Stefan Problem. Bull Braz. Math, Soc (2018)

  18. Fernández-Cara, E., Límaco, J., de Menezes, S.B.: On the controllability of a free-boundary problem for the 1D heat equation. Syst. Control Lett. 87, 29–35 (2016)

    Article  MATH  Google Scholar 

  19. Fernández-Cara, E., de Sousa, I.T.: Local null controllability of a free-boundary problem for the semilinear 1D heat equation. Bull Braz. Math. Soc. New Ser. 48, 303–315 (2017)

    Article  MATH  Google Scholar 

  20. Fernández-Cara, E., Zuazua, E.: Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 583–616 (2000)

    Article  MATH  Google Scholar 

  21. Fernández-Cara, E., Zuazua, E.: The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5(4–6), 465–514 (2000)

    MATH  Google Scholar 

  22. Friedman, A.: Variational Principles and Free-Boundary Problems. Wiley, New York (1982)

    MATH  Google Scholar 

  23. Friedman, A. (ed.): Tutorials in mathematical biosciences III, Cell cycle, proliferation, and cancer. Lecture Notes in Mathematics, Mathematical Biosciences Subseries, vol. 1872. Springer, Berlin (2006)

  24. Friedman, A.: PDE problems arising in mathematical biology. Netw. Heterog. Med. 7(4), 691–703 (2012)

    Article  MATH  Google Scholar 

  25. Fursikov, A.V., Imanuvilov, O.Y.: Controllability of Evolution Equations, Lecture Note Series 34. Research Institute of Mathematics. Seoul National University, Seoul (1996)

  26. Hermans, A.J.: Water Waves and Ship Hydrodynamics, An Introduction, 2nd edn. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  27. Hermans, A.J.: Water waves and ship hydrodynamics, an introduction. Commun. Partial Differ. Equ. 28(9–10), 1705–1738 (2003)

    Google Scholar 

  28. Ladyzhenskaya, O.A., Solonnikov, V.A., Uralćeva, N.N.: Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)

    Book  Google Scholar 

  29. Límaco, J., Medeiros, L.A., Zuazua, E.: Existence, uniqueness and controllability for parabolic equations in non-cylindrical domains. Matemática Contemporânea 23(part II), 49–70 (2002)

    MATH  Google Scholar 

  30. Liu, X., Zhang, X.: Local controllability of multidimensional quasi-linear parabolic equations. SIAM J. Control. Optim. 50(4), 2046–2064 (2012)

    Article  MATH  Google Scholar 

  31. Liu, Y., Takahashi, T., Tucsnak, M.: Single input controllability of a simplified fluid-structure interaction model. ESAIM Control Optim. Calc. Var. 19(1), 20–42 (2013)

    Article  MATH  Google Scholar 

  32. Medeiros, L.A., Límaco, J., De Menezes, S.B.: Vibrations of elastic strings: mathematical aspects—part one. J. Comput. Anal. Appl. 4(2), 91–127 (2002)

    MATH  Google Scholar 

  33. Stoker, J.J.: Water waves: the mathematical theory with applications, In: Pure and Applied Mathematics, vol. IV. Fluid flow, Interscience Publishers Inc., New York, Interscience Publishers Ltd., London (1957)

  34. Stoker, J.J.: Water waves: the mathematical theory with applications. Commun. Partial Differ. Equ. 28(9–10), 1705–1738 (2003)

    Google Scholar 

  35. Vázquez, J.L.: The Porous Medium Equations, Mathematical Theory, Oxford Mathematical Monographs, the Clarendon Press. Oxford University Press, Oxford (2007)

  36. Vázquez, J.L., Zuazua, E.: Large time behavior for a simplified 1D model of fluid-solid interaction. Commun. Partial Differ. Equ. 28(9–10), 1705–1738 (2003)

    Article  MATH  Google Scholar 

  37. Wang, L., Lan, Y., Lei, P.: Local null controllability of a free-boundary problem for the quasi-linear 1D parabolic equation. J. Math. Anal. Appl. 506, 125676 (2022)

    Article  MATH  Google Scholar 

  38. Wrobel, L.C., Brebbia, C.A. (eds.): Computational modelling of free and moving boundary problems, vol. I. Fluid flow, Proceedings of the First International Conference held in Southampton, July 2–4, 1991. Computational Mechanics Publications, Southampton, copublished with Walter de Gruyter and Co., Berlin (1991)

  39. Zheng, S., Chipot, M.: Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms. Asymptot. Anal. 45, 301–312 (2005)

    MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Límaco.

Ethics declarations

Competing interest

The authors have not disclosed any competing interests.

Additional information

Dedicated to Professor Vítor Costa Silva in memoriam.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 2.1

Let \(\psi \) be new variable defined by \(\varphi (x,t) := e^{s\alpha (x,t)}\psi (x,t)\). It yields:

$$\begin{aligned} \displaystyle \varphi _t= & {} s\alpha _te^{s\alpha }\psi + e^{s\alpha }\psi _t, \quad \varphi _x = s\alpha _xe^{s\alpha } \psi + e^{s\alpha }\psi _x \,\, \text{ and } \\ \displaystyle \varphi _{xx}= & {} e^{s\alpha }\left( \psi _{xx} + s^2\alpha ^2_x\psi + 2s\alpha _x\psi _x + s\alpha _{xx}\psi \right) . \end{aligned}$$

The functions \(\alpha \) and \(\xi \) yield:

$$\begin{aligned} \displaystyle \alpha _x= & {} -\xi _x = -\lambda \alpha _{0,x}\xi , \quad \alpha _{xx} = -\lambda ^2\alpha _{0,x}^2\xi - \lambda \alpha _{0,xx}\xi , \\ \displaystyle \alpha _t= & {} -k\frac{T-2t}{(T-t)^{k+1} t^{k+1}}\left( e^{2\lambda \parallel \alpha _1\parallel _{\infty } } - e^{\lambda \alpha _1(x,t)} \right) - \lambda \alpha _{0,t}\xi , \\ \displaystyle \alpha _{x,t}= & {} k \lambda \xi \left( \frac{(T-2t)}{t(T-t)}\alpha _{0,x} -\frac{\alpha _{0,tx}}{k}-\lambda \frac{\alpha _{0,t} \alpha _{0,x}}{k}\right) \end{aligned}$$

and, for \(\lambda \) sufficiently large, one has:

$$\begin{aligned} \displaystyle |\alpha _x|\le & {} C\lambda \xi , \quad |\alpha _{xx}| \le C\lambda ^2\xi ,\\ \displaystyle |\alpha _t|\le & {} C\xi ^{1+\frac{1}{k}} + C\lambda \xi \le C \lambda \xi ^{\frac{3}{2}} \quad \text{ and } \\ |\alpha _{x,t}|\le & {} C \lambda \xi ^2. \end{aligned}$$

On the other hand, we have that \(\psi (x,0) \equiv 0\) in (0, L(0)) and \(\psi (x,T) \equiv 0\) in \((0,\overline{L}(T))\).

Moreover, replacing \(\varphi \) by \(e^{s\alpha }\psi \) in the PDE (2.2), it yields:

$$\begin{aligned}&e^{-2s\alpha }(s\alpha _t\psi + \psi _t) + e^{-2s\alpha }\Big [\beta \left( t\right) \psi _{xx} + \beta \left( t\right) s^2\alpha _{x}^2\psi + 2\beta \left( t\right) s\alpha _x\psi _x\\&\quad + \beta \left( t\right) s\alpha _{xx}\psi \Big ] + e^{s\alpha }(a\psi ) + e^{s\alpha }\Big [s\alpha _x(b\psi ) + (b\psi _x) \Big ] = F(x,t), \end{aligned}$$

therefore,

$$\begin{aligned}&\Big [\psi _t + 2\beta \left( t\right) s\alpha _x\psi _x \Big ] + \Big [\beta \left( t\right) \psi _{xx} + \beta \left( t \right) s^2\alpha _{x}^2\psi \Big ] \\&\quad = - e^{-s\alpha } F(x,t) - s\alpha _t\psi - \beta \left( t\right) s\alpha _{xx}\psi - a\psi - s\alpha _xb\psi - b\psi _x. \end{aligned}$$

Considering the following notation

$$\begin{aligned} \left\{ \begin{array}{l} U\psi := \psi _t + 2\beta \left( t\right) s\alpha _x\psi _x = (U\psi )_1 + (U\psi )_2\\ V\psi := \beta \left( t\right) \psi _{xx} + \beta \left( t\right) s^2\alpha _{x}^2\psi = (V\psi )_1 + (V\psi )_2\\ \end{array}\right. , \end{aligned}$$

it yields:

$$\begin{aligned} U\psi + V\psi = G(x,t), \end{aligned}$$

where

$$\begin{aligned} G(x,t)= & {} - e^{-s\alpha (x,t)} F(x,t) - s\alpha _t(x,t)\psi (x,t) - \beta (t)s\alpha _{xx}(x,t)\psi (x,t) \\&- a(x,t)\psi (x,t) - s\alpha _x(x,t)b(x,t)\psi (x,t) - b(x,t)\psi _x(x,t). \end{aligned}$$

Therefore,

$$\begin{aligned}&\displaystyle \Vert U\psi \Vert _{L^2(Q_{\overline{L}})}^2 + \Vert V\psi \Vert _{L^2(Q_{\overline{L}})}^2 + 2(U\psi ,V\psi )_{L^2(Q_{\overline{L}})} \nonumber \\&\quad \displaystyle = \Vert e^{-s\alpha } F + s\alpha _t\psi + \beta s\alpha _{xx}\psi + a\psi + s\alpha _xb\psi + b\psi _x \Vert _{L^2(Q_{\overline{L}})}^2 \nonumber \\&\quad \displaystyle \le C\Big (\Vert e^{-2s\alpha }F\Vert _{L^2(Q_{\overline{L}})}^2 + \Vert s\alpha _t\psi \Vert _{L^2(Q_{\overline{L}})}^2 + \Vert \beta s\alpha _{xx}\psi \Vert ^2_{L^2(Q_{\overline{L}})}\Big .\nonumber \\&\qquad + \Big .\Vert a\psi \Vert ^2_{L^2(Q_{\overline{L}})} + \Vert s\alpha _xb\psi \Vert ^2_{L^2(Q_{\overline{L}})} + \Vert b\psi _x \Vert _{L^2(Q_{\overline{L}})}^2 \Big ) \nonumber \\&\quad \displaystyle \le C\Bigg (\iint _{Q_{\overline{L}}} e^{-2s\alpha }|F|^2dxdt + \iint _{Q_{\overline{L}}} s^2|\alpha _t|^2|\psi |^2dxdt \nonumber \\&\qquad + \iint _{Q_{\overline{L}}}\beta s^2|\alpha _{xx}|^2|\psi |^2dxdt \Big . \displaystyle + \Bigg . \iint _{Q_{\overline{L}}} |a|_{L^{\infty }(Q_{\overline{L}})}^2|\psi |^2dxdt \nonumber \\&\qquad + \iint _{Q_{\overline{L}}} |b|_{L^{\infty }(Q_{\overline{L}})}^2 s^2|\alpha _x|^2|\psi |^2dxdt + \iint _{Q_{\overline{L}}} |b|_{L^{\infty }(Q_{\overline{L}})}^2|\psi _x|^2dxdt \Bigg )\nonumber \\&\quad \displaystyle \le C\Bigg (\iint _{Q_{\overline{L}}} e^{-2s\alpha }|F|^2dxdt + \iint _{Q_{\overline{L}}} s^2\widetilde{C}\lambda ^2\xi ^3|\psi |^2dxdt \nonumber \\&\qquad + C_{\beta }\iint _{Q_{\overline{L}}} s^2\widetilde{C}\lambda ^4\xi ^2 |\psi |^2dxdt \Big . \displaystyle + \Bigg . |a|_{L^{\infty }(Q_{\overline{L}})}^2\iint _{Q_{\overline{L}}} |\psi |^2dxdt \nonumber \\&\qquad + |b|_{L^{\infty }(Q_{\overline{L}})}^2\iint _{Q_{\overline{L}}} s^2\lambda ^2|\alpha _{0,x}|^2\xi ^2|\psi |^2dxdt + |b|_{L^{\infty }(Q_{\overline{L}})}^2\iint _{Q_{\overline{L}}} |\psi _x|^2dxdt \Bigg )\nonumber \\&\quad \displaystyle \le C\Bigg ( \iint _{Q_{\overline{L}}} e^{-2s\alpha }|F|^2dxdt + \iint _{Q_{\overline{L}}} s^2\lambda ^4\xi ^3|\psi |^2dxdt + \iint _{Q_{\overline{L}}} |\psi _x|^2dxdt \Bigg ). \nonumber \\ \end{aligned}$$
(4.3)

Let us compute \((U\psi ,V\psi )_{L^2(Q_{\overline{L}})}\) and use the fact that \(\displaystyle \iint _{Q_{\overline{L}}} = \int _0^T\int _0^{{\overline{L}}(t)}\).

$$\begin{aligned} I_1= & {} \left( (U\psi )_1,(V\psi )_1\right) _{L^2(Q_{\overline{L}})} = \displaystyle \int _0^T\int _0^{{\overline{L}}(t)}\beta \psi _{t}\psi _{xx}dxdt \\= & {} \displaystyle \int _0^T\beta \left( \psi _t\psi _x \Big \vert _{0}^{{\overline{L}}(t)} - \int _{0}^{{\overline{L}}(t)}\psi _x\psi _{xt}ds \right) dt \\= & {} \displaystyle -\frac{1}{2}\int _0^T\beta \int _0^{{\overline{L}}(t)}\frac{d}{dt}[\psi _{x}]^2dxdt \\= & {} \displaystyle -\frac{1}{2}\int _0^T\left[ \beta \frac{d}{dt}\int _0^{{\overline{L}}(t)}(\psi _{x})^2dx - \beta \left[ \psi _x({\overline{L}}(t),t) \right] ^2{\overline{L}}'(t)\right] dt\\= & {} \displaystyle \frac{1}{2}\int _0^T\int _{0}^{{\overline{L}}(t)}\beta '(\psi _{x})^2dxdt + \frac{1}{2}\int _{0}^{T}\beta \left[ \psi _x({\overline{L}}(t),t) \right] ^2{\overline{L}}'(t)dt;\\ I_2= & {} \left( (U\psi )_1,(V\psi )_2\right) _{L^2(Q_{\overline{L}})} = \displaystyle \int _0^T\int _0^{{\overline{L}}(t)}s^2\beta \psi _{t}\alpha _x^2\psi dxdt \\= & {} \displaystyle \int _0^T\int _0^{{\overline{L}}(t)}s^2\beta \psi _{t}\alpha _x^2\psi dxdt \\= & {} \displaystyle \frac{s^2}{2}\int _0^T\beta \int _0^{{\overline{L}}(t)}\frac{d}{dt}\left( \psi \right) ^2\alpha _x^2 dxdt \\= & {} \displaystyle -\frac{s^2}{2}\int _0^T\int _0^{{\overline{L}}(t)}\left( \beta '\alpha ^2_x + 2\beta \alpha _x\alpha _{xt} \right) \psi ^2dxdt;\\ I_3= & {} \left( (U\psi )_2,(V\psi )_1\right) _{L^2(Q_{\overline{L}})} = \displaystyle \int _0^T\int _0^{{\overline{L}}(t)} 2s\beta ^2\alpha _x\psi _x\psi _{xx} dxdt \\= & {} \displaystyle \int _0^T\int _0^{{\overline{L}}(t)} s\beta ^2\alpha _x\frac{d}{dx}\left( \psi _x\right) ^2 dxdt \\= & {} \displaystyle -\int _0^T\int _0^{{\overline{L}}(t)} s\beta ^2\alpha _{xx}\psi _x^2 dxdt \displaystyle + \int _{0}^{T}s\psi _x^2({\overline{L}}(t),t)\beta ^2\alpha _x({\overline{L}}(t),t)dt\\&\displaystyle - \int _{0}^{T}s\psi _x^2(0,t)\beta ^2\alpha _x(0,t)dt;\\ I_4= & {} \left( (U\psi )_2,(V\psi )_2\right) _{L^2(Q_{\overline{L}})} = \displaystyle \int _0^T\int _0^{{\overline{L}}(t)} 2s^3\beta ^2\alpha _x^3\psi \psi _x dxdt \\= & {} \displaystyle s^3\int _0^T\int _0^{{\overline{L}}(t)} \beta ^2\alpha _x^3\frac{d}{dx}(\psi )^2 dxdt = \displaystyle -3s^3\int _0^T\int _0^{{\overline{L}}(t)} \beta ^2\alpha _{x}^2\alpha _{xx}\psi ^2 dxdt. \end{aligned}$$

Therefore,

$$\begin{aligned} \displaystyle (U\psi ,V\psi )_{L^2(Q_{\overline{L}})}= & {} \displaystyle -\int _0^T\int _0^{{\overline{L}}(t)} s\beta ^2\alpha _{xx}\psi _x^2 dxdt -3s^3\int _0^T\int _0^{{\overline{L}}(t)} \beta ^2\alpha _{x}^2\alpha _{xx}\psi ^2 dxdt\\&\displaystyle -\frac{s^2}{2}\int _0^T\int _0^{{\overline{L}}(t)}2\beta \alpha _x\alpha _{xt}\psi ^2dxdt + \int _{0}^{T}s\psi _x^2({\overline{L}}(t),t)\beta ^2\alpha _x(L(t),t)dt\\&\displaystyle + \frac{1}{2}\int _{0}^{T}\beta \left[ \psi _x({\overline{L}}(t),t) \right] ^2{\overline{L}}'(t)dt - \int _{0}^{T}s\psi _x^2(0,t)\beta ^2\alpha _x(0,t)dt\\&\displaystyle + \frac{1}{2}\int _0^T\int _{0}^{{\overline{L}}(t)}\beta '(\psi _{x})^2dxdt - \frac{s^2}{2}\int _0^T\int _0^{{\overline{L}}(t)}\beta '\alpha ^2_x\psi ^2dxdt. \end{aligned}$$

Now, computing \(\displaystyle \Vert U\psi \Vert _{L^2(Q_{\overline{L}})}^2 + \Vert V\psi \Vert _{L^2(Q_{\overline{L}})}^2 + 2(U\psi ,V\psi )_{L^2(Q_{\overline{L}})}\), we have:

$$\begin{aligned} (U\psi ,V\psi )_{L^2(Q_{\overline{L}})} \displaystyle= & {} I_1 + I_2 + I_3 + I_4 \nonumber \\ \displaystyle\ge & {} C\Bigg (\frac{1}{2}\int _0^T \beta \psi ^2_x({\overline{L}}(t),t){\overline{L}}'(t) dt + \frac{1}{2}\int _0^T\beta '\int _0^{{\overline{L}}(t)}\psi ^2_xdxdt\Bigg ) \nonumber \\&\displaystyle + \Bigg ( \frac{-s^2}{2}\iint _{Q_{\overline{L}}} \beta '\alpha _x^2\psi ^2dxdt - C_2s^2\lambda ^2\iint _{Q_{\overline{L}}} \xi ^3|\psi |^2dxdt \Bigg )\nonumber \\&\displaystyle + \Bigg (\frac{sC_3}{2}\iint _{Q_{\overline{L}}} \lambda ^2\xi |\psi _x|^2 dxdt \nonumber \\&- s\iint _{\omega _0\times (0,T)} \lambda ^2C_3\xi |\psi _x|^2dxdt + s\lambda C_3\int _0^T \left[ \xi ({\overline{L}}(t),t)\psi _x^2({\overline{L}}(t),t) \right. \nonumber \\&\displaystyle \left. +\xi (0,t)\psi _x^2(0,t) \right] dt \Bigg ) + \Bigg ( C_4\iint _{Q_{\overline{L}}} s^3\lambda ^4\xi ^3\psi ^2dxdt\nonumber \\&- \overline{C}\iint _{\omega _0\times (0,T)} s^3\lambda ^4\xi ^3\psi ^2dxdt \Bigg ); \end{aligned}$$
(4.4)
$$\begin{aligned} \displaystyle \Vert U\psi \Vert _{L^2(Q_{\overline{L}})}^2 \displaystyle= & {} \iint _{Q_{\overline{L}}} |\psi _t + 2\beta s\alpha _x\psi _x|^2dxdt \displaystyle = \iint _{Q_{\overline{L}}} \big |\psi _t + 2\beta s(\lambda \alpha _{0,x}\xi )\psi _x\big |^2dxdt \nonumber \\ \displaystyle\ge & {} C\Bigg ( \iint _{Q_{\overline{L}}} |\psi _t|^2dxdt - \iint _{Q_{\overline{L}}}s^2\lambda ^2\xi ^2|\psi _x|^2dxdt\Bigg ) \nonumber \\ \displaystyle\ge & {} \widetilde{C} \Bigg ( \iint _{Q_{\overline{L}}} (s\xi )^{-1} |\psi _t|^2dxdt - \iint _{Q_{\overline{L}}}(s\xi )\lambda ^2|\psi _x|^2dxdt\Bigg ); \end{aligned}$$
(4.5)
$$\begin{aligned} \displaystyle \Vert V\psi \Vert _{L^2(Q_{\overline{L}})}^2 \displaystyle= & {} \iint _{Q_{\overline{L}}} |\beta \psi _{xx} + \beta s^2\alpha _x^2\psi |^2dxdt\nonumber \\ \displaystyle= & {} \iint _{Q_{\overline{L}}} \big |\beta \psi _{xx} - (-\beta s^2\lambda ^2 \alpha _{0,x}^2\xi ^2\psi )\big |^2dxdt \nonumber \\ \displaystyle\ge & {} C\Bigg ( \iint _{Q_{\overline{L}}} |\psi _{xx}|^2dxdt - \iint _{Q_{\overline{L}}} s^4\lambda ^4\xi ^4|\psi |^2dxdt\Bigg ) \nonumber \\ \displaystyle\ge & {} \widetilde{C} \Bigg ( \iint _{Q_{\overline{L}}} (s\xi )^{-1} |\psi _{xx}|^2dxdt - \iint _{Q_{\overline{L}}} s^3\lambda ^4\xi ^3|\psi |^2dxdt\Bigg ). \end{aligned}$$
(4.6)

Combining the estimates (4.3) and (4.4), they yield:

$$\begin{aligned}&\displaystyle C\Bigg ( \iint _{Q_{\overline{L}}} e^{-2s\alpha }|F|^2dxdt \Bigg . +\displaystyle \Bigg . \iint _{Q_{\overline{L}}} s^2\lambda ^4\xi ^3|\psi |^2dxdt + \iint _{Q_{\overline{L}}} |\psi _x|^2dxdt \Bigg )\nonumber \\&\quad \ge \displaystyle \Vert U\psi \Vert _{L^2(Q_{\overline{L}})}^2 + \Vert V\psi \Vert _{L^2(Q_{\overline{L}})}^2 + 2(U\psi ,V\psi )_{L^2(Q_{\overline{L}})}\nonumber \\&\qquad \displaystyle \Vert U\psi \Vert _{L^2(Q_{\overline{L}})}^2 + \Vert V\psi \Vert _{L^2(Q_{\overline{L}})}^2 + \bigg ( \int _0^T \beta \psi ^2_x({\overline{L}}(t),t){\overline{L}}'(t) dt\bigg .\nonumber \\&\qquad + \displaystyle \int _0^T\beta '\int _0^{{\overline{L}}(t)}\psi ^2_xdxdt - s^2\iint _{Q_{\overline{L}}} \beta '\alpha _x^2\psi ^2dxdt\nonumber \\&\qquad -\displaystyle s^2\lambda ^2\iint _{Q_{\overline{L}}} \xi ^3|\psi |^2dxdt + s\iint _{Q_{\overline{L}}} \lambda ^2\xi |\psi _x|^2 dxdt \nonumber \\&\qquad + \displaystyle s\iint _{\omega _0\times (0,T)} \lambda ^2\xi |\psi _x|^2dxdt + s\lambda \int _0^T \left[ \xi ({\overline{L}}(t),t)\psi _x^2({\overline{L}}(t),t)\right. \nonumber \\&\qquad - \Bigg . \displaystyle \left. \xi (0,t)\psi _x^2(0,t) \right] dt + \iint _{Q_{\overline{L}}} s^3\lambda ^4\xi ^3\psi ^2dxdt - \iint _{\omega _0\times (0,T)} s^3\lambda ^4\xi ^3\psi ^2dxdt\Bigg ). \nonumber \\ \end{aligned}$$
(4.7)

Also, given \(\varepsilon > 0\), we have:

$$\begin{aligned} \iint _{\omega _0\times (0,T)} (s\xi )\lambda ^2|\psi _x|^2dxdt&\le \varepsilon \iint _{Q_{\overline{L}}}(s\xi )^{-1}|\psi _{xx}|^2 dxdt \nonumber \\&\quad + C_{\varepsilon }\iint _{\omega _0\times (0,T)}(s\xi )^3\lambda ^4|\psi |^2dxdt \end{aligned}$$
(4.8)

In fact,

$$\begin{aligned}&\displaystyle \Bigg |\iint _{\omega _0\times (0,T)} (s\xi )\lambda ^2\psi _x^2dxdt\Bigg | = \displaystyle \Bigg |\iint _{\omega _0\times (0,T)} s\lambda ^2(\xi \psi _x)_x\psi dxdt\Bigg |\\ \\&\quad \le \displaystyle \Bigg |\iint _{\omega _0\times (0,T)} s\lambda ^2\xi _x\psi _x\psi dxdt\Bigg | + \displaystyle \Bigg |\iint _{\omega _0\times (0,T)} s\lambda ^2\xi \psi _{xx}\psi dxdt\Bigg |\\ \\&\quad \le \displaystyle C\Bigg |\iint _{\omega _0\times (0,T)} (s\xi )(\lambda \psi _x)(\lambda ^2\psi )dxdt\Bigg | + \Bigg |\iint _{\omega _0\times (0,T)} (s\xi )\psi _{xx}(\lambda ^2\psi )dxdt\Bigg |\\ \\&\quad \le \displaystyle C\Bigg (\varepsilon _1 \iint _{\omega _0\times (0,T)} (s\xi )|\lambda \psi _x|^2dxdt + \frac{1}{4\varepsilon _1}\iint _{\omega _0\times (0,T)} (s\xi )|\lambda ^2\psi |^2dxdt \Bigg )\\ \\&\qquad + \displaystyle \Bigg (\varepsilon _2 \iint _{\omega _0\times (0,T)} (s\xi )^{-1}|\psi _{xx}|^2dxdt + \frac{1}{4\varepsilon _2}\iint _{\omega _0\times (0,T)} (s\xi )^{3}|\lambda ^2\psi |^2dxdt \Bigg ). \end{aligned}$$

Therefore,

$$\begin{aligned} \displaystyle \iint _{\omega _0\times (0,T)} (s\xi )\lambda ^2|\psi _x|^2dxdt\le & {} \displaystyle \frac{\varepsilon _2 }{1-C\varepsilon _1} \iint _{\omega _0\times (0,T)} (s\xi )^{-1}|\psi _{xx}|^2dxdt \\&+ C_{\varepsilon _1\varepsilon _2}\iint _{\omega _0\times (0,T)} (s\xi )^{3}\lambda ^4|\psi |^2dxdt \\\le & {} \displaystyle \frac{\varepsilon _2 }{1-C\varepsilon _1} \iint _{Q_{\overline{L}}} (s\xi )^{-1}|\psi _{xx}|^2dxdt \\&+ C_{\varepsilon _1\varepsilon _2}\iint _{\omega _0\times (0,T)} (s\xi )^{3}\lambda ^4|\psi |^2dxdt . \end{aligned}$$

Combining the inequalities (4.5)–(4.8), they yield:

$$\begin{aligned}&\displaystyle \iint _{Q_{\overline{L}}} (s\xi )^{-1} \left[ |\psi _t|^2 + |\psi _{xx}|^2\right] dxdt + \iint _{Q_{\overline{L}}} \left[ (s\xi )\lambda ^2|\psi _x|^2 + (s\xi )^3\lambda ^4|\psi |^2\right] dxdt \\&\qquad +\displaystyle (s\lambda ) \int _{0}^{T}\left[ \xi ({\overline{L}}(t),t)|\psi _x({\overline{L}}(t),t)|^2 + \xi (0,t)|\psi _x(0,t)|^2 \right] dt \\&\qquad + \int _0^T\beta '\int _0^{{\overline{L}}(t)}|\psi _x|^2dxdt \\&\quad \le \displaystyle C \,\Bigg ( \iint _{Q_{\overline{L}}} e^{-2s\alpha }|F|^2dxdt + \iint _{\omega \times (0,T)} s^3\lambda ^4\xi ^3|\psi |^2dxdt\\&\qquad + \iint _{Q_{\overline{L}}} |\psi _x|^2dxdt + \iint _{Q_{\overline{L}}} \beta '(s\xi )^2\lambda ^2|\psi |^2dxdt \Bigg ). \end{aligned}$$

Therefore,

$$\begin{aligned}&\displaystyle \iint _{Q_{\overline{L}}} \left[ (s\xi )^{-1}(|\psi _t|^2 + |\psi _{xx}|^2 ) + (s\xi )\lambda ^2|\psi _x|^2 + (s\xi )^3\lambda ^4|\psi |^2 \right] dxdt \\&\qquad + s\lambda \int _{0}^T \left[ \xi ({\overline{L}}(t),t)|\psi _x({\overline{L}}(t),t)|^2 + \xi (0,t)|\psi _x(0,t)|^2 \right] dt \\&\quad \le C \left( \iint _{Q_{\overline{L}}} e^{-2s\alpha } |F|^2 dxdt + \iint _{\omega \times (0,T)} (s\xi )^3\lambda ^4|\psi |^2dxdt \right) . \end{aligned}$$

Coming back to the original variable \(\varphi \), we have (2.4).

Appendix B: Proof of Lemma 2.2 and 2.3

Proof of Lemma 2.2

(i) For all \(0 \le \theta < 1\), we have:

$$\begin{aligned} \frac{| \beta (t_1) - \beta (t_2) |}{ |t_1 - t_2|^{\theta } }= & {} \frac{1}{ |t_1 - t_2|^{\theta } } \cdot \Big | \beta \left( \int _0^{\overline{L}(t_1)} \overline{y}(x,t_1) \ dx \right) - \beta \left( \int _0^{\overline{L}(t_2)} \overline{y}(x,t_2) \ dx \right) \Big | \\\le & {} \frac{C}{ |t_1 - t_2|^{\theta } } \cdot \Big | \int _0^{\overline{L}(t_1)} \overline{y}(x,t_1) \ dx - \int _0^{\overline{L}(t_2)} \overline{y}(x,t_2) \ dx \Big | \\\le & {} \frac{C}{ |t_1 - t_2|^{\theta } } \cdot \Big | \int _{\overline{L}(t_2)}^{\overline{L}(t_1)} \overline{y}(x,t_1) \ dx + \int _0^{\overline{L}(t_2)} \overline{y}(x,t_1) - \overline{y}(x,t_2) \ dx \Big | \\\le & {} \frac{C}{ |t_1 - t_2|^{\theta } } \cdot ( | \overline{L}(t_1) - \overline{L}(t_2) | + |t_1 - t_2| ) \\\le & {} C\frac{|t_1 - t_2|}{ |t_1 - t_2|^{\theta } } < \infty . \end{aligned}$$

Then, \(\beta \in C^{\theta }([0,T])\), for all \(0 \le \theta < 1\).

(ii) For all \(0 \le \theta < 1\), one has:

$$\begin{aligned}&\frac{| a(x_1,t_1) - a(x_2,t_2) |}{ (|x_1-x_2| + |t_1 - t_2|^{1/2})^{\theta } } \\&\qquad \le \frac{ \displaystyle { \int _0^1 \Big | \frac{\partial {g}}{\partial {s}}( \lambda \overline{y}(x_1,t_1), \lambda \overline{y}_x(x_1,t_1)) - \frac{\partial {g}}{\partial {s}}( \lambda \overline{y}(x_2,t_2), \lambda \overline{y}_x(x_2,t_2)) \Big | \ d\lambda } }{ (|x_1-x_2| + |t_1 - t_2|^{1/2})^{\theta } } \\&\qquad \le C \cdot \frac{( |\overline{y}(x_1,t_1) - \overline{y}(x_2,t_2)| + |\overline{y}_x(x_1,t_1) - \overline{y}_x(x_2,t_2)| )}{ (|x_1-x_2| + |t_1 - t_2|^{1/2})^{\theta } } \\&\qquad \le C \cdot \frac{ ( |x_1-x_2| + |t_1 - t_2| ) }{ ( |x_1-x_2| + |t_1 - t_2|^{1/2} )^{\theta } } < \infty . \end{aligned}$$

Then, \(a \in C_{x,t}^{\theta , \theta /2}(\overline{Q}_L)\), for all \(0 \le \theta < 1\). The proof is analogous to b(xt).

(iii) For all \(0 \le \theta <1\), one has:

$$\begin{aligned} \frac{| \widetilde{a}(\xi _1, t_1) - \widetilde{a}(\xi _2, t_2) |}{ (|\xi _1-\xi _2| + |t_1 - t_2|^{1/2})^{\theta }}= & {} \frac{| {a}( L(t_1)\xi _1, t_1) - {a}( L(t_2)\xi _2, t_2) |}{ (|\xi _1-\xi _2| + |t_1 - t_2|^{1/2})^{\theta } }\\= & {} \frac{| {a}( L(t_1)\xi _1, t_1) - {a}( L(t_2)\xi _2, t_2)| }{ (|L(t_1)\xi _1-L(t_2)\xi _2| + |t_1 - t_2|^{1/2})^{\theta } } \cdot \\&\frac{ (|L(t_1)\xi _1-L(t_2)\xi _2| + |t_1 - t_2|^{1/2})^{\theta } }{ (|\xi _1-\xi _2| + |t_1 - t_2|^{1/2})^{\theta } } , \end{aligned}$$

On the other hand, from (ii), we have

$$\begin{aligned} \displaystyle { \frac{| {a}( L(t_1)\xi _1, t_1) - {a}( L(t_2)\xi _2, t_2)| }{ (|L(t_1)\xi _1-L(t_2)\xi _2| + |t_1 - t_2|^{1/2})^{\theta } } } \le C. \end{aligned}$$

Then, one has,

$$\begin{aligned} \frac{| \widetilde{a}(\xi _1, t_1) - \widetilde{a}(\xi _2, t_2) |}{(|\xi _1-\xi _2| + |t_1 - t_2|^{1/2})^{\theta } }\le & {} C\cdot \frac{ (L(t_1)| \xi _1 - \xi _2 | + |\xi _2 | .|L(t_1) - L(t_2)| + |t_1 - t_2|^{1/2})^{\theta } }{ (|\xi _1-\xi _2| + |t_1 - t_2|^{1/2})^{\theta } } \\&\le C_1\cdot \frac{ (| \xi _1 - \xi _2 | + |L(t_1) - L(t_2)| + |t_1 - t_2|^{1/2})^{\theta } }{ (|\xi _1-\xi _2| + |t_1 - t_2|^{1/2})^{\theta } } \\&< \infty , \quad \forall \theta \in [0,1). \end{aligned}$$

Then, \(\widetilde{a} \in C_{\xi ,t}^{\theta , \theta /2}(\overline{Q})\), for all \(0 \le \theta < 1\).

In a similar way, we obtain \(\widehat{b}(\xi ,t) = b(L(t)\xi ,t) \in C_{\xi ,t}^{\theta , \theta /2}(\overline{Q})\). Let us analyse the function \(\displaystyle { \overline{b}(\xi ,t) = \xi \frac{L'(t)}{L(t)} }\), for \(L\in C^{1+ \gamma /2}([0,T])\).

For all \(0 \le \gamma < 1\),

$$\begin{aligned}&\frac{| \overline{b}(\xi _1, t_1) - \overline{b}(\xi _2, t_2) |}{ (|\xi _1-\xi _2| + |t_1 - t_2|^{1/2})^{\gamma } }\\&\quad = \frac{1}{ (|\xi _1-\xi _2| + |t_1 - t_2|^{1/2})^{\gamma } } \cdot \Big | \xi _1\frac{L'(t_1)}{L(t_1)} - \xi _2\frac{L'(t_2)}{L(t_2)} \Big | \\&\quad \le \frac{C}{ (|\xi _1-\xi _2| + |t_1 - t_2|^{1/2})^{\gamma } } \cdot \left( | \xi _1 - \xi _2| \cdot \Big | \frac{L'(t_1)}{L(t_1)} \Big | + |\xi _2| \cdot \Big | \frac{L'(t_1)}{L(t_1)} - \frac{L'(t_2)}{L(t_2)} \Big | \right) \\&\quad \le C_1 \cdot \frac{\left( \displaystyle { | \xi _1 - \xi _2| + |L'(t_1) - L'(t_2)|\frac{1}{|L(t_1)|} + |L'(t_2)| \cdot \frac{|L(t_2)-L(t_1)|}{|L(t_1)L(t_2)|} } \right) }{ (|\xi _1-\xi _2| + |t_1 - t_2|^{1/2})^{\gamma } }\\&\quad \le C_2 \cdot \frac{\left( \displaystyle { | \xi _1 - \xi _2| + |L'(t_1) - L'(t_2)| + |L(t_2)-L(t_1)| } \right) }{ (|\xi _1-\xi _2| + |t_1 - t_2|^{1/2})^{\gamma } } < \infty , \end{aligned}$$

since \(L\in C^{1+ \gamma /2}([0,T])\).

Then, \(\widetilde{b} \in C_{\xi ,t}^{\gamma , \gamma /2}(\overline{Q})\), for all \(0 \le \gamma < 1\). \(\square \)

Proof of Lemma 2.3

For \(0 \le \theta < 1\), one has:

$$\begin{aligned}&\frac{| L'(t_1) - L'(t_2) |}{ |t_1 - t_2|^{\theta } } \\&\quad = \frac{1}{ |t_1 - t_2|^{\theta } } \cdot \left[ \displaystyle \beta \left( \int _{0}^{\overline{L}(t_1)} y(x,t_1)dx\right) y_x(\overline{L}(t_1),t_1) \right. \\&\qquad \left. - \beta \left( \int _{0}^{\overline{L}(t_2)} y(x,t_2)dx\right) y_x(\overline{L}(t_2),t_2) \right] \\&\quad =\frac{1}{ |t_1 - t_2|^{\theta } } \cdot {\displaystyle { \left[ \displaystyle { \beta \left( \int _{0}^{\overline{L}(t_1)} y(x,t_1)dx\right) - \beta \left( \int _{0}^{\overline{L}(t_2)} y(x,t_2)dx\right) } \right] y_x(\overline{L}(t_1),t_1) }} \\&\qquad + \displaystyle { \frac{1}{ |t_1 - t_2|^{\theta } } \cdot \displaystyle { \beta \left( \int _{0}^{\overline{L}(t_2)} y(x,t_2)dx\right) \cdot \left[ y_x(\overline{L}(t_1),t_1) - y_x(\overline{L}(t_2),t_2) \right] } } \\&\quad = I_1 + I_2 \end{aligned}$$

For \(0 \le \theta < 1\), we obtain the following estimates for \(I_1\) and \(I_2\):

$$\begin{aligned} |I_1|\le & {} \frac{C}{ |t_1 - t_2|^{\theta } } \cdot \Big | \displaystyle { {\displaystyle { \displaystyle { \int _{0}^{\overline{L}(t_1)} y(x,t_1) \ dx - \int _{0}^{\overline{L}(t_2)} y(x,t_2) \ dx } }} } \Big | \\\le & {} \frac{C}{ |t_1 - t_2|^{\theta } } \cdot \Big | \int _{\overline{L}(t_2)}^{\overline{L}(t_1)} \overline{y}(x,t_1) \ dx + \int _0^{\overline{L}(t_2)} \overline{y}(x,t_1) - \overline{y}(x,t_2) \ dx \Big | \\\le & {} \frac{C_1}{ |t_1 - t_2|^{\theta } } \cdot |\overline{L}(t_1) - \overline{L}(t_2)| + c\int _0^{\overline{L}(t_2)} \frac{ |\overline{y}(x,t_1) - \overline{y}(x,t_2)| }{|t_1 - t_2|^{\theta }} \ dx \\\le & {} C_2 \left( \sup _{t_1, t_2\in [0,T]} \frac{|\overline{L}(t_1) - \overline{L}(t_2)|}{|t_1 - t_2|^{\theta }} + \sup _{t_1, t_2\in [0,T]} \frac{|\overline{y}(x,t_1) - \overline{y}(x,t_2)|}{|t_1 - t_2|^{\theta }} \right) < \infty , \end{aligned}$$

and

$$\begin{aligned} |I_2|\le & {} \frac{C}{ |t_1 - t_2|^{\theta } } \cdot |y_x(\overline{L}(t_1),t_1) - y_x(\overline{L}(t_2),t_2)| \\\le & {} \frac{C}{ |t_1 - t_2|^{\theta } } \cdot ( |\overline{L}(t_1) - \overline{L}(t_2)| + |t_1 - t_2| ) < \infty . \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, V., Límaco, J., Lopes, A.R. et al. On the Controllability of a Free-Boundary Problem for 1D Heat Equation with Local and Nonlocal Nonlinearities. Appl Math Optim 87, 11 (2023). https://doi.org/10.1007/s00245-022-09916-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09916-6

Keywords

Navigation