Skip to main content
Log in

Stochastic Optimal Control of a Doubly Nonlinear PDE Driven by Multiplicative Lévy Noise

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this work, we study an initial value control problem for a doubly nonlinear PDE perturbed by multiplicative Lévy noise. We first establish wellposedness of a weak martingale solution. Monotonicity arguments have been exploited in the proofs. A path-wise uniqueness of weak martingale solutions is settled via the standard \(L^1\)-method. We formulate the associated control problem, and establish existence of a weak optimal solution of the underlying problem via variational approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. See Sect. 3.3 for the definition of functional spaces \( {\mathbb {D}}([0,T]; W^{-1,p^\prime })\) and \( {\mathbb {D}}([0,T]; L^2_w)\)

  2. Supremum topology \({\mathcal {T}}\) is the smallest topology containing \( {\mathcal {S}}=\cup _{i=1}^4 {\mathcal {T}}_i \) i.e., the topology generated from the collection \({\mathcal {S}}\) as a sub-bassis. Note that it is different from the subspace topology.

References

  1. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. Wiley, New York (1999)

  2. Biswas, I.H., Karlsen, K.H., Majee, A.K.: Conservation laws driven by Lévy white noise. J. Hyperb. Differ. Equ. 12(3), 581–654 (2015)

    Article  MATH  Google Scholar 

  3. Blackwell, D., Dubins, L.E.: An extension of Skorokhod’s almost sure representation theorem. Proc. Am. Math. Soc. 89(4), 691–692 (1983)

    MATH  Google Scholar 

  4. Brezis, H.: Functional Analysis Theory and Applications. Collection of Applied Mathematics for the Master’s Degree, Masson, Paris (1983)

  5. Brzeźniak, Z., Hausenblas, E.: Maximal regularity for stochastic convolutions driven by Lévy processes. Probab. Theory Relat. Fields 145, 615–637 (2009)

    Article  MATH  Google Scholar 

  6. Brzeźniak, Z., Motyl, E.: Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded \(2D\) and \(3D\) domains. J. Differ. Equ. 1627–1685 (2013)

  7. Brzeźniak, Z., Serrano, R.: Optimal relaxed control of dissipative stochastic partial differential equations in Banach spaces. SIAM J. Control. Optim. 51(3), 2664–2703 (2013)

    Article  MATH  Google Scholar 

  8. Brzeźniak, Z., Hausenblas, E., Razafimandimby, P.A.: Stochastic reaction diffusion equation driven by jump processes. Potential Anal. 49(1), 131–201 (2018)

    Article  MATH  Google Scholar 

  9. Diaz, J.I., De Thélin, F.: On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal. 25(4), 1085–1111 (1994)

    Article  MATH  Google Scholar 

  10. Dunst, T., Majee, A.K., Prohl, A., Vallet, G.: On stochastic optimal control in ferromagnetism. Arch. Rational Mech. Anal. 233(3), 1383–1440 (2019)

    Article  MATH  Google Scholar 

  11. Fernique, X.: Un modèle presque sûr pour la convergence en loi. (French) [An almost sure model for weak convergence]. C. R. Acad. Sci. Paris Sér. I Math. 306(7), 335–338 (1988)

  12. Grecksch, W., Tudor, C.: Stochastic evolution equations. A Hilbert space approach. In: Mathematical Research, vol. 85. Akademie-Verlag, Berlin (1995)

  13. Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105, 143–158 (1996)

    Article  MATH  Google Scholar 

  14. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. NorthHolland Publishing Company, Amsterdam (1981)

    MATH  Google Scholar 

  15. Jakubowski, A.: The almost sure Skorokhod representation for subsequences in non-metric spaces. Theory Probab. Appl. 42(1), 164–174 (1998)

    Article  Google Scholar 

  16. Joffe, A., Métivier, M.: Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18, 20–65 (1986)

    Article  MATH  Google Scholar 

  17. Krylov, N.V., Rozovskiıǐ, B.L.: Stochastic evolution equations. In: Stochastic Differential Equations: Theory and Applications. Interdisciplinary Mathematical Sciences vol. 2, pp. 1–69. World Scientific Publishing, Hackensack (2007)

  18. Lions, J.L.: Quelques méthodes de résolution desproblèmes aux limites non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  19. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Universitext. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  20. Majee, A.K.: Stochastic optimal control of a evolutionary \(p\)-Laplace equation with multiplicative Lévy noise. In: ESAIM: Control, Optimisation and Calculus of Variations (2020). https://doi.org/10.1051/cocv/2020028

  21. Métivier, M.: Stochastic Partial Differential Equations in Infinite Dimensional Spaces. Scuola Normale Superiore, Pisa (1988)

    MATH  Google Scholar 

  22. Métivier, M., Viot, M.: On weak solutions of stochastic partial differential equations. Lect. Notes Math. 1322(1988), 139–150 (1988)

    Article  MATH  Google Scholar 

  23. Mielke, A., Rossi, R., Savaré, R.G.: Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. Partial Differ. Equ. 46(1–2), 253–310 (2013)

    Article  MATH  Google Scholar 

  24. Mikulevicius, R., Rozovskii, B.L.: Global \(L_2\)-solutions of stochastic Navier-Stokes equations. Ann. Probab. 33(1), 137–176 (2005)

    Article  MATH  Google Scholar 

  25. Motyl, E.: Stochastic Navier-Stokes equations driven by Lévy noise in unbounded 3D domains. Potential Anal. 38, 863–912 (2013)

    MATH  Google Scholar 

  26. Pardoux, E.: Équations aux dérivées partielles stochastiques non linéaires monotones. PhD thesis, University of Paris Sud (1975)

  27. Parthasarathy, K.R.: Probability Measures on Metric Spaces. Academic Press, New York (1967)

    Book  MATH  Google Scholar 

  28. Peszat, S., Zabczyk J.: Stochastic Partial Differential Equations with Lévy noise. Encyclopedia of Mathematics and Its Applications. An Evolution Equation Approach, vol. 113. Cambridge University Press, Cambridge (2007)

  29. Ruzicka, M.: Nichtlineare Funktionalanalysis. Eine Einführung. Springer, Berlin (2004)

    MATH  Google Scholar 

  30. Sapountzoglou, N., Wittbold, P., Zimmermann, A.: On a doubly nonlinear PDE with stochastic perturbation. Stoch. Partial Differ. Equ. Anal. Comput. 7(2), 297–330 (2019)

    MATH  Google Scholar 

  31. Skorokhod, A.V.: Limit theorems for stochastic processes. Theory Probab. Appl. 1, 261–290 (1956)

    Article  MATH  Google Scholar 

  32. Vallet, G., Zimmermann, A.: Well-posedness for a pseudomonotone evolution problem with multiplicative noise. J. Evol. Equ. 19, 153–202 (2019)

    Article  MATH  Google Scholar 

  33. Van der Vaart, A.W., Wellner, J.A.: Weak convergence and empirical processes with applications to statistics. In: Springer Series in Statistics. Springer, New York (1996)

  34. Visintin, A.: Two-scale model of phase transitions. Physics D 106(1–2), 66–80 (1997)

    Article  MATH  Google Scholar 

  35. Visintin, A.: Electromagnetic processes in doubly-nonlinear composites. Commun. Partial Differ. Equ. 33(4–6), 808–841 (2008)

    Article  MATH  Google Scholar 

  36. Visintin, A.: Introduction to Stefan-type problems. In: Handbook of Differential Equations: Evolutionary Equations. Handbook of Differential Equations, vol. IV, pp. 377–484, Elsevier, New York (2008)

  37. Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators. Springer, New York (1990)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the financial support by Department of Science and Technology, Govt. of India-the INSPIRE fellowship (IFA18-MA119).

Funding

Funding was provided by Department of Science and Technology, Govt. of India (Grant Number IFA18-MA119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananta K. Majee.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

5 Appendix

5 Appendix

In this Appendix, we wish to prove Theorem 3.5. To do so, we start with some useful definition. For any separable and complete metric space \(({\mathbb {S}}, \rho )\), let us recall the notion of modulus of a function in the space \({\mathbb {D}}(0,T;{\mathbb {S}})\) endowed with the Skorokhod topology.

Definition 5.1

Let \(\delta >0\) be given and \(u\in {\mathbb {D}}(0,T;{\mathbb {S}})\). Let \(\Pi _\delta \) be the set of all increasing sequence of partitions \({\bar{p}}=\{0=t_0<t_1<t_2<\ldots <t_n=T\}\) of [0, T] with the property \(t_{i+1}-t_i \ge \delta \) for \(i=0,1,\ldots , n-1\). A modulus of u in the space \({\mathbb {D}}(0,T;{\mathbb {S}})\), denoted by \(w_{[0,T];{\mathbb {S}}}(u,\delta )\), is defined by

$$\begin{aligned} w_{[0,T];{\mathbb {S}}}(u,\delta )= \inf _{\Pi _\delta } \max _{t_i \in {\bar{p}}} \sup _{t_i \le s<t <t_{i+1}\le T} \rho (u(t),u(s))\,. \end{aligned}$$

Analogous to the Arzela-Ascoli theorem for the space of continuous functions, we have the following criterion for relative compactness of a subset of the space \( {\mathbb {D}}(0,T;{\mathbb {S}})\), whose proof can be found in [16, 21].

Theorem 5.1

A set \({\mathcal {A}} \subset {\mathbb {D}}(0,T;{\mathbb {S}})\) has a compact closure if and only if it satisfies the following two conditions:

  1. (i)

    there exists a dense subset \({\bar{I}}\) of [0, T] such that for every \(t\in {\bar{I}}\), the set \({\mathcal {A}}_t:=\{u(t): u\in {\mathcal {A}}\}\) has compact closure in \({\mathbb {S}}\),

  2. (ii)

    \(\underset{\delta \rightarrow 0}{\lim }\, \underset{u\in {\mathcal {A}}}{\sup }\, w_{[0,T]; {\mathbb {S}}}(u,\delta )=0\).

Let us recall the path space \({\mathcal {Z}}\):

$$\begin{aligned} {\mathcal {Z}}:= {\mathbb {D}}([0,T]; W^{-1,p^\prime })\cap {\mathbb {D}}([0,T]; L^2_w)\cap L^2_w(0,T; W^{1,2}) \cap L^2(0,T; L^2) \end{aligned}$$

equipped with the supremum topology \({\mathcal {T}}\); see (3.10). The following lemma provides a criterion for the relative compactness of a subset of \(({\mathcal {Z}}, {\mathcal {T}})\).

Lemma 5.2

A set \({\mathcal {K}}\subset {\mathcal {Z}}\) is \({\mathcal {T}}\)-relatively compact if the following three conditions hold:

  1. (a)

    for all \(u\in {\mathcal {K}}\) and \(t\in [0,T]\), \(u(t)\in L^2\) and \(\underset{u\in {\mathcal {K}}}{\sup }\, \underset{s\in [0,T]}{\sup }\, \Vert u(s)\Vert _{L^2} < + \infty \),

  2. (b)

    \({\mathcal {K}}\) is bounded in \(L^2(0,T;W^{1,2})\) i.e., \(\underset{u\in {\mathcal {K}}}{\sup }\, \int _0^T \Vert u(s)\Vert _{W^{1,2}}\,ds < + \infty \),

  3. (c)

    \(\underset{\delta \rightarrow 0}{\lim }\, \underset{u\in {\mathcal {K}}}{\sup }\, w_{[0,T]; W^{-1,p^\prime }}(u,\delta )=0\).

Proof

Without loss of generality, we assume that \({\mathcal {K}}\) is closed in \({\mathcal {Z}}\). We first show that the compactness of \({\mathcal {K}}\subset {\mathcal {Z}}\) is equivalent to its sequential compactness. Indeed, thanks to the condition \(\mathrm{b)}\), the set \({\mathcal {K}}\) is bounded in \(L^2(0,T; W^{1,2})\) and therefore the weak topology \({\mathcal {T}}_2\) on \(L^2_w(0,T; W^{1,2})\) induced on \({\mathcal {Z}}\) is metrizable. For any \(r\in {\mathbb {R}}^*\), consider the ball \({\mathbb {B}}\)

$$\begin{aligned} {\mathbb {B}}:=\{ y\in L^2: \Vert y\Vert _{L^2} \le r\}\,. \end{aligned}$$

Thanks to [4], the ball \({\mathbb {B}}\) endowed with the weak topology, denoted by \({\mathbb {B}}_w\), is metrizable. Consider the space \({\mathbb {D}}([0,T]; {\mathbb {B}}_w)\), the space of weakly càdlàg functions \(y:[0,T]\rightarrow L^2\) with \(\underset{t\in [0,T]}{\sup }\, \Vert y(t)\Vert _{L^2} \le r\). It is well-known that the space \({\mathbb {D}}([0,T]; {\mathbb {B}}_w)\) is metrizable by the metric \(\delta _{T,r}\)

$$\begin{aligned} \delta _{T,r}(y_1, y_2)&:= \inf _{\lambda \in \Lambda _T}\Bigg \{ \sup _{t\in [0,T]} \mathtt{q}_r \big (y_1(t), y_2(\lambda (t))\big ) + \sup _{t\in [0,T]} \big | t-\lambda (t)\big | \\&\quad + \sup _{s\ne t} \Big | \log \frac{\lambda (t)-\lambda (s)}{t-s}\Big | \Bigg \}\,, \end{aligned}$$

where \(\mathtt{q}_r\) denote the metric compatible with the weak topology on the ball \({\mathbb {B}}\) and \(\Lambda _T\) is the set of increasing homeomorphisms of [0, T]. Moreover, \(\big ( {\mathbb {D}}([0,T]; {\mathbb {B}}_w), \delta _{T,r}\big )\) is a complete metric space. Therefore, In view of the assumption \(\mathrm{a)}\), we may consider the metric subspace \({\mathbb {D}}([0,T]; {\mathbb {B}}_w)\subset {\mathbb {D}}([0,T]; L^2_w)\) with \(r: =\underset{u\in {\mathcal {K}}}{\sup }\, \underset{s\in [0,T]}{\sup }\,\Vert u(s)\Vert _{L^2}\). Clearly, remaining spaces are all metrizable. Hence we conclude that the compactness of \({\mathcal {K}}\subset {\mathcal {Z}}\) is equivalent to its sequential compactness.

Let \(\{u_n\}\) be a sequence in \({\mathcal {K}}\). Thanks to the Banach-Alaoglu theorem and the assumption \(\mathrm{b)}\), the set \({\mathcal {K}}\) is compact in \(L_w^2(0,T; W^{1,2})\). Next we show that \(\{u_n\}\) is compact in \({\mathbb {D}}([0,T]; W^{-1,p^\prime })\). To show this, we need to check the conditions of Theorem 5.1 for \({\mathbb {S}}= W^{-1,p^\prime }\). By using condition \(\mathrm{a)}\), we see that for every \(t\in [0,T]\), the set \(\{ u_n(t): n\in {\mathbb {N}}\}\) is bounded in \(L^2\). Since the embedding \(L^2 \subset W^{-1, p^\prime }\) is compact, the set \(\{ u_n(t): n\in {\mathbb {N}}\}\) has compact closure in \(W^{-1, p^\prime }\) for every \(t\in [0,T]\). Recalling the condition \(\mathrm{b)}\) together with the fact that the set \(\{ u_n(t): n\in {\mathbb {N}}\}\) has compact closure in \(W^{-1, p^\prime }\) for every \(t\in [0,T]\), we conclude from Theorem 5.1 that the sequence \(\{u_n\}\) is compact in \({\mathbb {D}}([0,T]; W^{-1,p^\prime })\). Therefore, there exist \(u\in {\mathbb {D}}([0,T]; W^{-1,p^\prime })\cap L^2_w(0,T; W^{1,2})\) and a subsequence \(\{u_{n_k}\}\) of \(\{u_n\}\) such that

$$\begin{aligned} u_{n_k} \rightarrow u ~~~\text {in}~~{\mathbb {D}}([0,T]; W^{-1,p^\prime })\cap L^2_w(0,T; W^{1,2})~~~ \text {as}~~k\rightarrow \infty . \end{aligned}$$

Since \(u_{n_k} \rightarrow u\) in \({\mathbb {D}}([0,T]; W^{-1,p^\prime })\), one has \(u_{n_k}(t) \rightarrow u(t)\) in \(W^{-1,p^\prime }\) for all continuity point t of u; see [1]. In view of the embedding \(L^2\hookrightarrow W^{-1,p^\prime }\) and the condition \(\mathrm{a)}\) together with the Lebesgue dominated convergence theorem, we get that

$$\begin{aligned} u_{n_k}\rightarrow u~~~\text {in} ~~L^2(0,T; W^{-1,p^\prime }) ~~~\text {as}~~k\rightarrow \infty . \end{aligned}$$
(4.6)

We now prove that \(u_{n_k}\rightarrow u\) in \(L^2(0,T; L^2)\). To do so, we proceed as follows. For each \(\varepsilon >0\), there exists a constant \(C(\varepsilon ) >0 \) such that

$$\begin{aligned} \Vert y\Vert _{L^2}^2 \le \varepsilon \Vert y\Vert _{W^{1,2}}^2 + C(\varepsilon ) \Vert y\Vert _{W^{-1,p^\prime }}^2 \quad \forall ~y\in W^{1,2}\,. \end{aligned}$$
(4.7)

Replacing y by \(u_{n_k}(s)-u(s)\) for almost all \(s\in [0,T]\) in (4.7), and then integrating over the time interval [0, T], we get

$$\begin{aligned} \Vert u_{n_k}-u\Vert _{L^2(0,T; L^2)}^2&\le \varepsilon \Vert u_{n_k}-u\Vert _{L^2(0,T;W^{1,2})}^2 + C(\varepsilon ) \Vert u_{n_k}-u\Vert _{L^2(0,T; W^{-1,p^\prime })}^2 \nonumber \\&\le 2\varepsilon \big ( \Vert u_{n_k}\Vert _{L^2(0,T;W^{1,2})}^2 + \Vert u\Vert _{L^2(0,T;W^{1,2})}^2\big ) \nonumber \\&\quad + C(\varepsilon ) \Vert u_{n_k}-u\Vert _{L^2(0,T; W^{-1,p^\prime })}^2 \nonumber \\&\le 2\varepsilon {\tilde{C}} + C(\varepsilon ) \Vert u_{n_k}-u\Vert _{L^2(0,T; W^{-1,p^\prime })}^2\, \end{aligned}$$
(4.8)

where \({\tilde{C}}= \underset{y \in {\mathcal {K}}}{\sup }\, \int _0^T \Vert y(t)\Vert _{W^{1,2}}^2\,dt\), which is finite by the condition \(\mathrm{b)}\). Passing to the limit in (4.8) as \(k\rightarrow \infty \), we have, thanks to (4.6) and the arbitrariness of \(\varepsilon \),

$$\begin{aligned} \Vert u_{n_k}-u\Vert _{L^2(0,T; L^2)}^2 \rightarrow 0 ~~~\text {as}~~k\rightarrow \infty . \end{aligned}$$

It remains to show that the sequence \(\{u_n\}\) is compact in \({\mathbb {D}}([0,T];{\mathbb {B}}_w)\). Since \(\{u_n\}\) is compact in \({\mathbb {D}}([0,T]; W^{-1,p^\prime })\), and by the condition \(\mathrm{a)}\), \(u_n\) satisfies the estimate

$$\begin{aligned} \sup _{n} \sup _{s\in [0,T]} \Vert u_n(s)\Vert _{L^2} \le r: =\underset{u\in {\mathcal {K}}}{\sup }\, \underset{s\in [0,T]}{\sup }\,\Vert u(s)\Vert _{L^2}, \end{aligned}$$

we get from Lemma 2 in [25] that \(u_n, u \in {\mathbb {D}}([0,T];{\mathbb {B}}_w)\) and \(u_n \rightarrow 0\) in \({\mathbb {D}}([0,T];{\mathbb {B}}_w)\) as \(n\rightarrow \infty \). This completes the proof. \(\square \)

1.1 Proof of Theorem 3.5

Let \({\mathcal {L}}(X_\tau )\) be the laws of the sequence \((X_\tau )\) on \({\mathcal {Z}}\). We need to show that for every \(\varepsilon >0\), there exists a compact set \(K_\varepsilon \) of \({\mathcal {Z}}\) such that

$$\begin{aligned} \sup _{\varepsilon >0} {\mathcal {L}}(X_\tau )(K_\varepsilon ) \ge 1-\varepsilon . \end{aligned}$$

Thanks to the Markov inequality and the assumption \(\mathrm{(i)}\),

$$\begin{aligned} {\mathbb {P}} \Big ( \sup _{t\in [0,T]} \Vert X_\tau (t)\Vert _{L^2}> R_1\Big )&\le \frac{{\mathbb {E}}\Big [ \sup _{t\in [0,T]} \Vert X_\tau (t)\Vert _{L^2} \Big ]}{R_1} \\&\le \frac{ \sup _{\tau >0} {\mathbb {E}}\Big [ \sup _{t\in [0,T]}\Vert X_{\tau }(t)\Vert _{L^2}\Big ]}{R_1}\le \frac{C_1}{R_1} \,. \end{aligned}$$

By choosing \(R_1>0\) such that \(R_1> \frac{3C_1}{\varepsilon }\), we get

$$\begin{aligned} {\mathbb {P}} \Big ( \sup _{t\in [0,T]} \Vert X_\tau (t)\Vert _{L^2} > R_1\Big ) \le \frac{\varepsilon }{3}\,. \end{aligned}$$
(4.9)

Similarly, by using Markov-inequality, the assumption \(\mathrm{(ii)}\) and the fact that \( \Vert u\Vert _{W^{1,2}}\le C \Vert u\Vert _{W_0^{1,p}}\) for any \(u\in W_0^{1,p}\), we have, for any \(R_2>0\)

$$\begin{aligned} {\mathbb {P}}\Big ( \Vert X_\tau \Vert _{L^2(0,T; W^{1,2})}> R_2\Big )&\le {\mathbb {P}}\Big ( \Vert X_\tau \Vert _{L^2(0,T; W_0^{1,p})}> \frac{R_2}{C}\Big ) \\&\le \frac{ C^2}{R_2^2} \, \sup _{\tau >0}{\mathbb {E}}\Big [ \Vert X_\tau \Vert _{L^2(0,T;W_0^{1,p})}^2\Big ] \le \frac{C_2 C^2}{R_2^2}\,. \end{aligned}$$

Let \(R_2\) be such that \( \frac{C_2 C^2}{R_2^2}\le \frac{\varepsilon }{3}\). Then

$$\begin{aligned} {\mathbb {P}}\Big ( \Vert X_\tau \Vert _{L^2(0,T; W^{1,2})} > R_2\Big ) \le \frac{\varepsilon }{3}\,. \end{aligned}$$
(4.10)

Since \((X_\tau )_{\tau >0}\) satisfies the Aldous condition in \(W^{-1, p^\prime }\) (cf. condition \(\mathrm{(iii)}\)), \((X_\tau )\) also satisfies the following condition; see [16, Theorem 2.2.2]: for every \(\varepsilon >0\) and \(\gamma >0\), there exists a \(\delta >0\) such that

$$\begin{aligned} \sup _{\tau>0} {\mathbb {P}}\Big ( w_{[0,T]; W^{-1, p^\prime }}(X_\tau , \delta ) > \gamma \Big ) \le \varepsilon . \end{aligned}$$

Then, thanks to [25, Lemma 7 ], for every \(\varepsilon >0\) there exists a subset \({\mathcal {A}}_{\frac{\varepsilon }{3}} \subset {\mathbb {D}}([0,T]; W^{-1,p^\prime })\) such that

  1. (I)

    \(\underset{\tau>0}{\sup }\, {\mathcal {L}}(X_\tau )({\mathcal {A}}_{\frac{\varepsilon }{3}}) > 1-\frac{ \varepsilon }{3}\),

  2. (II)

    \(\underset{\delta \rightarrow 0}{\lim }\, \underset{u\in {\mathcal {A}}_{\frac{\varepsilon }{3}}}{\sup }\, w_{[0,T]; W^{-1, p^\prime }}(u, \delta )=0\).

Define the sets

$$\begin{aligned} {\mathcal {A}}_1:= \big \{ u \in {\mathcal {Z}}: \sup _{t\in [0,T]} \Vert u(t)\Vert _{L^2} \le R_1 \big \}; \quad {\mathcal {A}}_2:= \big \{ u \in {\mathcal {Z}}: \Vert u\Vert _{L^2(0,T; W^{1,2})} \le R_2 \big \}\,. \end{aligned}$$

Let \(K_\varepsilon \) be the closure of the set \({\mathcal {A}}_1 \cap {\mathcal {A}}_2 \cap {\mathcal {A}}_{\frac{\varepsilon }{3}}\) in \({\mathcal {Z}}\). Then by Lemma 5.2, \(K_\varepsilon \) is compact in \({\mathcal {Z}}\). Moreover, by (4.9), (4.10) and \(\mathrm{(II)}\), one can easily deduce that

$$\begin{aligned} \sup _{\tau >0} {\mathcal {L}}(X_\tau )(K_\varepsilon ) \ge 1-\varepsilon . \end{aligned}$$

This completes the proof of Theorem 3.5 .

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majee, A.K. Stochastic Optimal Control of a Doubly Nonlinear PDE Driven by Multiplicative Lévy Noise. Appl Math Optim 87, 7 (2023). https://doi.org/10.1007/s00245-022-09912-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09912-w

Keywords

Mathematics Subject Classification

Navigation